[642b259] | 1 | |
---|
| 2 | ##################################################################### |
---|
| 3 | #This software was developed by the University of Tennessee as part of the |
---|
| 4 | #Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 5 | #project funded by the US National Science Foundation. |
---|
| 6 | #See the license text in license.txt |
---|
| 7 | #copyright 2008, University of Tennessee |
---|
| 8 | ###################################################################### |
---|
| 9 | import numpy |
---|
| 10 | import math |
---|
| 11 | import logging |
---|
| 12 | import sys |
---|
[2b440504] | 13 | import sans.models.sans_extension.smearer as smearer |
---|
[642b259] | 14 | from sans.models.smearing_2d import Smearer2D |
---|
| 15 | |
---|
| 16 | def smear_selection(data1D, model = None): |
---|
| 17 | """ |
---|
| 18 | Creates the right type of smearer according |
---|
| 19 | to the data. |
---|
| 20 | |
---|
| 21 | The canSAS format has a rule that either |
---|
| 22 | slit smearing data OR resolution smearing data |
---|
| 23 | is available. |
---|
| 24 | |
---|
| 25 | For the present purpose, we choose the one that |
---|
| 26 | has none-zero data. If both slit and resolution |
---|
| 27 | smearing arrays are filled with good data |
---|
| 28 | (which should not happen), then we choose the |
---|
| 29 | resolution smearing data. |
---|
| 30 | |
---|
| 31 | :param data1D: Data1D object |
---|
| 32 | :param model: sans.model instance |
---|
| 33 | """ |
---|
| 34 | # Sanity check. If we are not dealing with a SANS Data1D |
---|
| 35 | # object, just return None |
---|
| 36 | if data1D.__class__.__name__ not in ['Data1D', 'Theory1D']: |
---|
| 37 | if data1D == None: |
---|
| 38 | return None |
---|
| 39 | elif data1D.dqx_data == None or data1D.dqy_data == None: |
---|
| 40 | return None |
---|
| 41 | return Smearer2D(data1D) |
---|
| 42 | |
---|
| 43 | if not hasattr(data1D, "dx") and not hasattr(data1D, "dxl")\ |
---|
| 44 | and not hasattr(data1D, "dxw"): |
---|
| 45 | return None |
---|
| 46 | |
---|
| 47 | # Look for resolution smearing data |
---|
| 48 | _found_resolution = False |
---|
| 49 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
| 50 | |
---|
| 51 | # Check that we have non-zero data |
---|
| 52 | if data1D.dx[0] > 0.0: |
---|
| 53 | _found_resolution = True |
---|
| 54 | #print "_found_resolution",_found_resolution |
---|
| 55 | #print "data1D.dx[0]",data1D.dx[0],data1D.dxl[0] |
---|
| 56 | # If we found resolution smearing data, return a QSmearer |
---|
| 57 | if _found_resolution == True: |
---|
| 58 | return QSmearer(data1D, model) |
---|
| 59 | |
---|
| 60 | # Look for slit smearing data |
---|
| 61 | _found_slit = False |
---|
| 62 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x) \ |
---|
| 63 | and data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
| 64 | |
---|
| 65 | # Check that we have non-zero data |
---|
| 66 | if data1D.dxl[0] > 0.0 or data1D.dxw[0] > 0.0: |
---|
| 67 | _found_slit = True |
---|
| 68 | |
---|
| 69 | # Sanity check: all data should be the same as a function of Q |
---|
| 70 | for item in data1D.dxl: |
---|
| 71 | if data1D.dxl[0] != item: |
---|
| 72 | _found_resolution = False |
---|
| 73 | break |
---|
| 74 | |
---|
| 75 | for item in data1D.dxw: |
---|
| 76 | if data1D.dxw[0] != item: |
---|
| 77 | _found_resolution = False |
---|
| 78 | break |
---|
| 79 | # If we found slit smearing data, return a slit smearer |
---|
| 80 | if _found_slit == True: |
---|
| 81 | return SlitSmearer(data1D, model) |
---|
| 82 | return None |
---|
| 83 | |
---|
| 84 | |
---|
| 85 | class _BaseSmearer(object): |
---|
| 86 | |
---|
| 87 | def __init__(self): |
---|
| 88 | self.nbins = 0 |
---|
| 89 | self.nbins_low = 0 |
---|
| 90 | self.nbins_high = 0 |
---|
| 91 | self._weights = None |
---|
| 92 | ## Internal flag to keep track of C++ smearer initialization |
---|
| 93 | self._init_complete = False |
---|
| 94 | self._smearer = None |
---|
| 95 | self.model = None |
---|
[2b440504] | 96 | |
---|
| 97 | def __deepcopy__(self, memo={}): |
---|
| 98 | """ |
---|
| 99 | Return a valid copy of self. |
---|
| 100 | Avoid copying the _smearer C object and force a matrix recompute |
---|
| 101 | when the copy is used. |
---|
| 102 | """ |
---|
| 103 | result = _BaseSmearer() |
---|
| 104 | result.nbins = self.nbins |
---|
| 105 | return result |
---|
| 106 | |
---|
[642b259] | 107 | def _compute_matrix(self): |
---|
| 108 | """ |
---|
| 109 | """ |
---|
| 110 | return NotImplemented |
---|
| 111 | |
---|
| 112 | def get_bin_range(self, q_min=None, q_max=None): |
---|
| 113 | """ |
---|
| 114 | |
---|
| 115 | :param q_min: minimum q-value to smear |
---|
| 116 | :param q_max: maximum q-value to smear |
---|
| 117 | |
---|
| 118 | """ |
---|
| 119 | # If this is the first time we call for smearing, |
---|
| 120 | # initialize the C++ smearer object first |
---|
| 121 | if not self._init_complete: |
---|
| 122 | self._initialize_smearer() |
---|
| 123 | if q_min == None: |
---|
| 124 | q_min = self.min |
---|
| 125 | if q_max == None: |
---|
| 126 | q_max = self.max |
---|
[2b440504] | 127 | |
---|
[642b259] | 128 | _qmin_unsmeared, _qmax_unsmeared = self.get_unsmeared_range(q_min, |
---|
| 129 | q_max) |
---|
| 130 | _first_bin = None |
---|
| 131 | _last_bin = None |
---|
| 132 | |
---|
| 133 | #step = (self.max - self.min) / (self.nbins - 1.0) |
---|
| 134 | # Find the first and last bin number in all extrapolated and real data |
---|
| 135 | try: |
---|
| 136 | for i in range(self.nbins): |
---|
| 137 | q_i = smearer.get_q(self._smearer, i) |
---|
| 138 | if (q_i >= _qmin_unsmeared) and (q_i <= _qmax_unsmeared): |
---|
| 139 | # Identify first and last bin |
---|
| 140 | if _first_bin is None: |
---|
| 141 | _first_bin = i |
---|
| 142 | else: |
---|
| 143 | _last_bin = i |
---|
| 144 | except: |
---|
| 145 | msg = "_BaseSmearer.get_bin_range: " |
---|
| 146 | msg += " error getting range\n %s" % sys.exc_value |
---|
| 147 | raise RuntimeError, msg |
---|
| 148 | |
---|
| 149 | # Find the first and last bin number only in the real data |
---|
| 150 | _first_bin, _last_bin = self._get_unextrapolated_bin( \ |
---|
| 151 | _first_bin, _last_bin) |
---|
| 152 | |
---|
| 153 | return _first_bin, _last_bin |
---|
| 154 | |
---|
| 155 | def __call__(self, iq_in, first_bin = 0, last_bin = None): |
---|
| 156 | """ |
---|
| 157 | Perform smearing |
---|
| 158 | """ |
---|
| 159 | # If this is the first time we call for smearing, |
---|
| 160 | # initialize the C++ smearer object first |
---|
| 161 | if not self._init_complete: |
---|
| 162 | self._initialize_smearer() |
---|
| 163 | |
---|
| 164 | if last_bin is None or last_bin >= len(iq_in): |
---|
| 165 | last_bin = len(iq_in) - 1 |
---|
| 166 | # Check that the first bin is positive |
---|
| 167 | if first_bin < 0: |
---|
| 168 | first_bin = 0 |
---|
| 169 | |
---|
| 170 | # With a model given, compute I for the extrapolated points and append |
---|
| 171 | # to the iq_in |
---|
| 172 | iq_in_temp = iq_in |
---|
| 173 | if self.model != None: |
---|
[2b440504] | 174 | temp_first, temp_last = self._get_extrapolated_bin( \ |
---|
| 175 | first_bin, last_bin) |
---|
[642b259] | 176 | if self.nbins_low > 0: |
---|
[2b440504] | 177 | iq_in_low = self.model.evalDistribution( \ |
---|
[642b259] | 178 | numpy.fabs(self.qvalues[0:self.nbins_low])) |
---|
[2b440504] | 179 | iq_in_high = self.model.evalDistribution( \ |
---|
[642b259] | 180 | self.qvalues[(len(self.qvalues) - \ |
---|
| 181 | self.nbins_high - 1):]) |
---|
| 182 | # Todo: find out who is sending iq[last_poin] = 0. |
---|
| 183 | if iq_in[len(iq_in) - 1] == 0: |
---|
| 184 | iq_in[len(iq_in) - 1] = iq_in_high[0] |
---|
| 185 | # Append the extrapolated points to the data points |
---|
| 186 | if self.nbins_low > 0: |
---|
| 187 | iq_in_temp = numpy.append(iq_in_low, iq_in) |
---|
| 188 | if self.nbins_high > 0: |
---|
| 189 | iq_in_temp = numpy.append(iq_in_temp, iq_in_high[1:]) |
---|
| 190 | else: |
---|
| 191 | temp_first = first_bin |
---|
| 192 | temp_last = last_bin |
---|
[2b440504] | 193 | #iq_in_temp = iq_in |
---|
| 194 | |
---|
[642b259] | 195 | # Sanity check |
---|
| 196 | if len(iq_in_temp) != self.nbins: |
---|
| 197 | msg = "Invalid I(q) vector: inconsistent array " |
---|
| 198 | msg += " length %d != %s" % (len(iq_in_temp), str(self.nbins)) |
---|
| 199 | raise RuntimeError, msg |
---|
| 200 | |
---|
| 201 | # Storage for smeared I(q) |
---|
| 202 | iq_out = numpy.zeros(self.nbins) |
---|
| 203 | |
---|
| 204 | smear_output = smearer.smear(self._smearer, iq_in_temp, iq_out, |
---|
| 205 | #0, self.nbins - 1) |
---|
| 206 | temp_first, temp_last) |
---|
| 207 | #first_bin, last_bin) |
---|
| 208 | if smear_output < 0: |
---|
| 209 | msg = "_BaseSmearer: could not smear, code = %g" % smear_output |
---|
| 210 | raise RuntimeError, msg |
---|
| 211 | |
---|
| 212 | temp_first = first_bin + self.nbins_low |
---|
| 213 | temp_last = self.nbins - self.nbins_high |
---|
| 214 | out = iq_out[temp_first: temp_last] |
---|
| 215 | |
---|
| 216 | return out |
---|
| 217 | |
---|
| 218 | def _initialize_smearer(self): |
---|
| 219 | """ |
---|
| 220 | """ |
---|
| 221 | return NotImplemented |
---|
| 222 | |
---|
| 223 | |
---|
| 224 | def _get_unextrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
| 225 | """ |
---|
| 226 | Get unextrapolated first bin and the last bin |
---|
| 227 | |
---|
| 228 | : param first_bin: extrapolated first_bin |
---|
| 229 | : param last_bin: extrapolated last_bin |
---|
| 230 | |
---|
| 231 | : return fist_bin, last_bin: unextrapolated first and last bin |
---|
| 232 | """ |
---|
| 233 | # For first bin |
---|
| 234 | if first_bin <= self.nbins_low: |
---|
| 235 | first_bin = 0 |
---|
| 236 | else: |
---|
| 237 | first_bin = first_bin - self.nbins_low |
---|
| 238 | # For last bin |
---|
| 239 | if last_bin >= (self.nbins - self.nbins_high): |
---|
| 240 | last_bin = self.nbins - (self.nbins_high + self.nbins_low + 1) |
---|
| 241 | elif last_bin >= self.nbins_low: |
---|
| 242 | last_bin = last_bin - self.nbins_low |
---|
| 243 | else: |
---|
| 244 | last_bin = 0 |
---|
| 245 | return first_bin, last_bin |
---|
| 246 | |
---|
| 247 | def _get_extrapolated_bin(self, first_bin = 0, last_bin = 0): |
---|
| 248 | """ |
---|
| 249 | Get extrapolated first bin and the last bin |
---|
| 250 | |
---|
| 251 | : param first_bin: unextrapolated first_bin |
---|
| 252 | : param last_bin: unextrapolated last_bin |
---|
| 253 | |
---|
| 254 | : return first_bin, last_bin: extrapolated first and last bin |
---|
| 255 | """ |
---|
| 256 | # For the first bin |
---|
| 257 | # In the case that needs low extrapolation data |
---|
| 258 | first_bin = 0 |
---|
| 259 | # For last bin |
---|
| 260 | if last_bin >= self.nbins - (self.nbins_high + self.nbins_low + 1): |
---|
| 261 | # In the case that needs higher q extrapolation data |
---|
| 262 | last_bin = self.nbins - 1 |
---|
| 263 | else: |
---|
| 264 | # In the case that doesn't need higher q extrapolation data |
---|
| 265 | last_bin += self.nbins_low |
---|
| 266 | |
---|
| 267 | return first_bin, last_bin |
---|
| 268 | |
---|
| 269 | class _SlitSmearer(_BaseSmearer): |
---|
| 270 | """ |
---|
| 271 | Slit smearing for I(q) array |
---|
| 272 | """ |
---|
| 273 | |
---|
| 274 | def __init__(self, nbins=None, width=None, height=None, min=None, max=None): |
---|
| 275 | """ |
---|
| 276 | Initialization |
---|
| 277 | |
---|
| 278 | :param iq: I(q) array [cm-1] |
---|
| 279 | :param width: slit width [A-1] |
---|
| 280 | :param height: slit height [A-1] |
---|
| 281 | :param min: Q_min [A-1] |
---|
| 282 | :param max: Q_max [A-1] |
---|
| 283 | |
---|
| 284 | """ |
---|
| 285 | _BaseSmearer.__init__(self) |
---|
| 286 | ## Slit width in Q units |
---|
| 287 | self.width = width |
---|
| 288 | ## Slit height in Q units |
---|
| 289 | self.height = height |
---|
| 290 | ## Q_min (Min Q-value for I(q)) |
---|
| 291 | self.min = min |
---|
| 292 | ## Q_max (Max Q_value for I(q)) |
---|
| 293 | self.max = max |
---|
| 294 | ## Number of Q bins |
---|
| 295 | self.nbins = nbins |
---|
| 296 | ## Number of points used in the smearing computation |
---|
| 297 | self.npts = 3000 |
---|
| 298 | ## Smearing matrix |
---|
| 299 | self._weights = None |
---|
| 300 | self.qvalues = None |
---|
| 301 | |
---|
| 302 | def _initialize_smearer(self): |
---|
| 303 | """ |
---|
| 304 | Initialize the C++ smearer object. |
---|
| 305 | This method HAS to be called before smearing |
---|
| 306 | """ |
---|
| 307 | #self._smearer = smearer.new_slit_smearer(self.width, |
---|
| 308 | # self.height, self.min, self.max, self.nbins) |
---|
| 309 | self._smearer = smearer.new_slit_smearer_with_q(self.width, |
---|
| 310 | self.height, self.qvalues) |
---|
| 311 | self._init_complete = True |
---|
| 312 | |
---|
| 313 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 314 | """ |
---|
| 315 | Determine the range needed in unsmeared-Q to cover |
---|
| 316 | the smeared Q range |
---|
| 317 | """ |
---|
| 318 | # Range used for input to smearing |
---|
| 319 | _qmin_unsmeared = q_min |
---|
| 320 | _qmax_unsmeared = q_max |
---|
| 321 | try: |
---|
| 322 | _qmin_unsmeared = self.min |
---|
| 323 | _qmax_unsmeared = self.max |
---|
| 324 | except: |
---|
| 325 | logging.error("_SlitSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 326 | return _qmin_unsmeared, _qmax_unsmeared |
---|
| 327 | |
---|
| 328 | class SlitSmearer(_SlitSmearer): |
---|
| 329 | """ |
---|
| 330 | Adaptor for slit smearing class and SANS data |
---|
| 331 | """ |
---|
| 332 | def __init__(self, data1D, model = None): |
---|
| 333 | """ |
---|
| 334 | Assumption: equally spaced bins of increasing q-values. |
---|
| 335 | |
---|
| 336 | :param data1D: data used to set the smearing parameters |
---|
| 337 | """ |
---|
| 338 | # Initialization from parent class |
---|
| 339 | super(SlitSmearer, self).__init__() |
---|
| 340 | |
---|
| 341 | ## Slit width |
---|
| 342 | self.width = 0 |
---|
| 343 | self.nbins_low = 0 |
---|
| 344 | self.nbins_high = 0 |
---|
| 345 | self.model = model |
---|
| 346 | if data1D.dxw is not None and len(data1D.dxw) == len(data1D.x): |
---|
| 347 | self.width = data1D.dxw[0] |
---|
| 348 | # Sanity check |
---|
| 349 | for value in data1D.dxw: |
---|
| 350 | if value != self.width: |
---|
| 351 | msg = "Slit smearing parameters must " |
---|
| 352 | msg += " be the same for all data" |
---|
| 353 | raise RuntimeError, msg |
---|
| 354 | ## Slit height |
---|
| 355 | self.height = 0 |
---|
| 356 | if data1D.dxl is not None and len(data1D.dxl) == len(data1D.x): |
---|
| 357 | self.height = data1D.dxl[0] |
---|
| 358 | # Sanity check |
---|
| 359 | for value in data1D.dxl: |
---|
| 360 | if value != self.height: |
---|
| 361 | msg = "Slit smearing parameters must be" |
---|
| 362 | msg += " the same for all data" |
---|
| 363 | raise RuntimeError, msg |
---|
| 364 | # If a model is given, get the q extrapolation |
---|
| 365 | if self.model == None: |
---|
| 366 | data1d_x = data1D.x |
---|
| 367 | else: |
---|
| 368 | # Take larger sigma |
---|
| 369 | if self.height > self.width: |
---|
| 370 | # The denominator (2.0) covers all the possible w^2 + h^2 range |
---|
| 371 | sigma_in = data1D.dxl / 2.0 |
---|
| 372 | elif self.width > 0: |
---|
| 373 | sigma_in = data1D.dxw / 2.0 |
---|
| 374 | else: |
---|
| 375 | sigma_in = [] |
---|
| 376 | |
---|
| 377 | self.nbins_low, self.nbins_high, _, data1d_x = \ |
---|
| 378 | get_qextrapolate(sigma_in, data1D.x) |
---|
| 379 | |
---|
| 380 | ## Number of Q bins |
---|
| 381 | self.nbins = len(data1d_x) |
---|
| 382 | ## Minimum Q |
---|
| 383 | self.min = min(data1d_x) |
---|
| 384 | ## Maximum |
---|
| 385 | self.max = max(data1d_x) |
---|
| 386 | ## Q-values |
---|
| 387 | self.qvalues = data1d_x |
---|
| 388 | |
---|
| 389 | |
---|
| 390 | class _QSmearer(_BaseSmearer): |
---|
| 391 | """ |
---|
| 392 | Perform Gaussian Q smearing |
---|
| 393 | """ |
---|
| 394 | |
---|
| 395 | def __init__(self, nbins=None, width=None, min=None, max=None): |
---|
| 396 | """ |
---|
| 397 | Initialization |
---|
| 398 | |
---|
| 399 | :param nbins: number of Q bins |
---|
| 400 | :param width: array standard deviation in Q [A-1] |
---|
| 401 | :param min: Q_min [A-1] |
---|
| 402 | :param max: Q_max [A-1] |
---|
| 403 | """ |
---|
| 404 | _BaseSmearer.__init__(self) |
---|
| 405 | ## Standard deviation in Q [A-1] |
---|
| 406 | self.width = width |
---|
| 407 | ## Q_min (Min Q-value for I(q)) |
---|
| 408 | self.min = min |
---|
| 409 | ## Q_max (Max Q_value for I(q)) |
---|
| 410 | self.max = max |
---|
| 411 | ## Number of Q bins |
---|
| 412 | self.nbins = nbins |
---|
| 413 | ## Smearing matrix |
---|
| 414 | self._weights = None |
---|
| 415 | self.qvalues = None |
---|
| 416 | |
---|
| 417 | def _initialize_smearer(self): |
---|
| 418 | """ |
---|
| 419 | Initialize the C++ smearer object. |
---|
| 420 | This method HAS to be called before smearing |
---|
| 421 | """ |
---|
| 422 | #self._smearer = smearer.new_q_smearer(numpy.asarray(self.width), |
---|
| 423 | # self.min, self.max, self.nbins) |
---|
| 424 | self._smearer = smearer.new_q_smearer_with_q(numpy.asarray(self.width), |
---|
| 425 | self.qvalues) |
---|
| 426 | self._init_complete = True |
---|
| 427 | |
---|
| 428 | def get_unsmeared_range(self, q_min, q_max): |
---|
| 429 | """ |
---|
| 430 | Determine the range needed in unsmeared-Q to cover |
---|
| 431 | the smeared Q range |
---|
| 432 | Take 3 sigmas as the offset between smeared and unsmeared space |
---|
| 433 | """ |
---|
| 434 | # Range used for input to smearing |
---|
| 435 | _qmin_unsmeared = q_min |
---|
| 436 | _qmax_unsmeared = q_max |
---|
| 437 | try: |
---|
| 438 | offset = 3.0 * max(self.width) |
---|
| 439 | _qmin_unsmeared = self.min#max([self.min, q_min - offset]) |
---|
| 440 | _qmax_unsmeared = self.max#min([self.max, q_max + offset]) |
---|
| 441 | except: |
---|
| 442 | logging.error("_QSmearer.get_bin_range: %s" % sys.exc_value) |
---|
| 443 | return _qmin_unsmeared, _qmax_unsmeared |
---|
| 444 | |
---|
| 445 | |
---|
| 446 | class QSmearer(_QSmearer): |
---|
| 447 | """ |
---|
| 448 | Adaptor for Gaussian Q smearing class and SANS data |
---|
| 449 | """ |
---|
| 450 | def __init__(self, data1D, model = None): |
---|
| 451 | """ |
---|
| 452 | Assumption: equally spaced bins of increasing q-values. |
---|
| 453 | |
---|
| 454 | :param data1D: data used to set the smearing parameters |
---|
| 455 | """ |
---|
| 456 | # Initialization from parent class |
---|
| 457 | super(QSmearer, self).__init__() |
---|
| 458 | data1d_x = [] |
---|
| 459 | self.nbins_low = 0 |
---|
| 460 | self.nbins_high = 0 |
---|
[2b440504] | 461 | self.model = model |
---|
[642b259] | 462 | ## Resolution |
---|
| 463 | #self.width = numpy.zeros(len(data1D.x)) |
---|
| 464 | if data1D.dx is not None and len(data1D.dx) == len(data1D.x): |
---|
| 465 | self.width = data1D.dx |
---|
| 466 | |
---|
| 467 | if self.model == None: |
---|
| 468 | data1d_x = data1D.x |
---|
| 469 | else: |
---|
| 470 | self.nbins_low, self.nbins_high, self.width, data1d_x = \ |
---|
| 471 | get_qextrapolate(self.width, data1D.x) |
---|
[2b440504] | 472 | |
---|
[642b259] | 473 | ## Number of Q bins |
---|
| 474 | self.nbins = len(data1d_x) |
---|
| 475 | ## Minimum Q |
---|
| 476 | self.min = min(data1d_x) |
---|
| 477 | ## Maximum |
---|
| 478 | self.max = max(data1d_x) |
---|
| 479 | ## Q-values |
---|
| 480 | self.qvalues = data1d_x |
---|
| 481 | |
---|
| 482 | |
---|
| 483 | def get_qextrapolate(width, data_x): |
---|
| 484 | """ |
---|
| 485 | Make fake data_x points extrapolated outside of the data_x points |
---|
| 486 | |
---|
| 487 | : param width: array of std of q resolution |
---|
| 488 | : param Data1D.x: Data1D.x array |
---|
| 489 | |
---|
| 490 | : return new_width, data_x_ext: extrapolated width array and x array |
---|
| 491 | |
---|
| 492 | : assumption1: data_x is ordered from lower q to higher q |
---|
| 493 | : assumption2: len(data) = len(width) |
---|
| 494 | : assumption3: the distance between the data points is more compact |
---|
| 495 | than the size of width |
---|
| 496 | : Todo1: Make sure that the assumptions are correct for Data1D |
---|
| 497 | : Todo2: This fixes the edge problem in Qsmearer but still needs to make |
---|
| 498 | smearer interface |
---|
| 499 | """ |
---|
| 500 | # Length of the width |
---|
| 501 | length = len(width) |
---|
[5f65636] | 502 | width_low = math.fabs(width[0]) |
---|
[642b259] | 503 | width_high = math.fabs(width[length -1]) |
---|
[5f65636] | 504 | nbins_low = 0.0 |
---|
| 505 | nbins_high = 0.0 |
---|
[642b259] | 506 | # Compare width(dQ) to the data bin size and take smaller one as the bin |
---|
| 507 | # size of the extrapolation; this will correct some weird behavior |
---|
| 508 | # at the edge: This method was out (commented) |
---|
| 509 | # because it becomes very expansive when |
---|
| 510 | # bin size is very small comparing to the width. |
---|
| 511 | # Now on, we will just give the bin size of the extrapolated points |
---|
| 512 | # based on the width. |
---|
| 513 | # Find bin sizes |
---|
| 514 | #bin_size_low = math.fabs(data_x[1] - data_x[0]) |
---|
| 515 | #bin_size_high = math.fabs(data_x[length - 1] - data_x[length - 2]) |
---|
| 516 | # Let's set the bin size 1/3 of the width(sigma), it is good as long as |
---|
| 517 | # the scattering is monotonous. |
---|
| 518 | #if width_low < (bin_size_low): |
---|
| 519 | bin_size_low = width_low / 10.0 |
---|
| 520 | #if width_high < (bin_size_high): |
---|
| 521 | bin_size_high = width_high / 10.0 |
---|
| 522 | |
---|
| 523 | # Number of q points required below the 1st data point in order to extend |
---|
| 524 | # them 3 times of the width (std) |
---|
[5f65636] | 525 | if width_low > 0.0: |
---|
| 526 | nbins_low = math.ceil(3.0 * width_low / bin_size_low) |
---|
[642b259] | 527 | # Number of q points required above the last data point |
---|
[5f65636] | 528 | if width_high > 0.0: |
---|
| 529 | nbins_high = math.ceil(3.0 * width_high / bin_size_high) |
---|
[642b259] | 530 | # Make null q points |
---|
| 531 | extra_low = numpy.zeros(nbins_low) |
---|
| 532 | extra_high = numpy.zeros(nbins_high) |
---|
| 533 | # Give extrapolated values |
---|
| 534 | ind = 0 |
---|
| 535 | qvalue = data_x[0] - bin_size_low |
---|
| 536 | #if qvalue > 0: |
---|
| 537 | while(ind < nbins_low): |
---|
| 538 | extra_low[nbins_low - (ind + 1)] = qvalue |
---|
| 539 | qvalue -= bin_size_low |
---|
| 540 | ind += 1 |
---|
| 541 | #if qvalue <= 0: |
---|
| 542 | # break |
---|
| 543 | # Redefine nbins_low |
---|
| 544 | nbins_low = ind |
---|
| 545 | # Reset ind for another extrapolation |
---|
| 546 | ind = 0 |
---|
| 547 | qvalue = data_x[length -1] + bin_size_high |
---|
| 548 | while(ind < nbins_high): |
---|
| 549 | extra_high[ind] = qvalue |
---|
| 550 | qvalue += bin_size_high |
---|
| 551 | ind += 1 |
---|
| 552 | # Make a new qx array |
---|
| 553 | if nbins_low > 0: |
---|
| 554 | data_x_ext = numpy.append(extra_low, data_x) |
---|
| 555 | else: |
---|
| 556 | data_x_ext = data_x |
---|
| 557 | data_x_ext = numpy.append(data_x_ext, extra_high) |
---|
| 558 | |
---|
| 559 | # Redefine extra_low and high based on corrected nbins |
---|
| 560 | # And note that it is not necessary for extra_width to be a non-zero |
---|
| 561 | if nbins_low > 0: |
---|
| 562 | extra_low = numpy.zeros(nbins_low) |
---|
| 563 | extra_high = numpy.zeros(nbins_high) |
---|
| 564 | # Make new width array |
---|
| 565 | new_width = numpy.append(extra_low, width) |
---|
| 566 | new_width = numpy.append(new_width, extra_high) |
---|
| 567 | |
---|
| 568 | # nbins corrections due to the negative q value |
---|
| 569 | nbins_low = nbins_low - len(data_x_ext[data_x_ext<=0]) |
---|
| 570 | return nbins_low, nbins_high, \ |
---|
| 571 | new_width[data_x_ext>0], data_x_ext[data_x_ext>0] |
---|
| 572 | |
---|
| 573 | if __name__ == '__main__': |
---|
| 574 | x = 0.001 * numpy.arange(1, 11) |
---|
| 575 | y = 12.0 - numpy.arange(1, 11) |
---|
| 576 | print x |
---|
| 577 | #for i in range(10): print i, 0.001 + i*0.008/9.0 |
---|
| 578 | #for i in range(100): print i, int(math.floor( (i/ (100/9.0)) )) |
---|
| 579 | s = _SlitSmearer(nbins=10, width=0.0, height=0.005, min=0.001, max=0.010) |
---|
| 580 | #s = _QSmearer(nbins=10, width=0.001, min=0.001, max=0.010) |
---|
| 581 | s._compute_matrix() |
---|
| 582 | |
---|
| 583 | sy = s(y) |
---|
| 584 | print sy |
---|
| 585 | |
---|
| 586 | if True: |
---|
| 587 | for i in range(10): |
---|
| 588 | print x[i], y[i], sy[i] |
---|
| 589 | #print q, ' : ', s.weight(q), s._compute_iq(q) |
---|
| 590 | #print q, ' : ', s(q), s._compute_iq(q) |
---|
| 591 | #s._compute_iq(q) |
---|
| 592 | |
---|
| 593 | |
---|
| 594 | |
---|
| 595 | |
---|