1 | """ |
---|
2 | plottables.pyre is a module for registering pyre objects as plottables. |
---|
3 | |
---|
4 | Uses plottables from the reflectivity repository |
---|
5 | Plottables require Python 2.5 |
---|
6 | |
---|
7 | """ |
---|
8 | from plottables import Plottable |
---|
9 | |
---|
10 | def label(model, collection): |
---|
11 | """Build a label mostly unique within a collection""" |
---|
12 | # Find all items in the collection of the same type |
---|
13 | conflicts = [] |
---|
14 | |
---|
15 | model_object = model.component |
---|
16 | |
---|
17 | for item in collection: |
---|
18 | if item.component.name == model_object.name: |
---|
19 | conflicts.append(item.component) |
---|
20 | |
---|
21 | # If no conflict, return name |
---|
22 | if len(conflicts) == 0: |
---|
23 | return model_object.name |
---|
24 | |
---|
25 | # Fill out the usual detail from the inventory |
---|
26 | detail = {} |
---|
27 | #for item in model_object.properties(): |
---|
28 | # if not item.name.startswith("help"): |
---|
29 | # detail[item.name] = item.name |
---|
30 | |
---|
31 | # Check which fields differ (only to the first level!) |
---|
32 | for c in conflicts: |
---|
33 | |
---|
34 | # Loop through the local properties and find differences |
---|
35 | for item in model_object.properties(): |
---|
36 | if not item.name.startswith("help"): |
---|
37 | |
---|
38 | # Check common parameters for now |
---|
39 | if hasattr(c, item.name) and hasattr(model_object, item.name): |
---|
40 | c_val = getattr(c, item.name) |
---|
41 | o_val = getattr(model_object, item.name) |
---|
42 | |
---|
43 | if not c_val == o_val: |
---|
44 | detail[item.name] = o_val |
---|
45 | |
---|
46 | # Build a label out of the distinctions |
---|
47 | # TODO: how do we force natural order traversal on detail keys? |
---|
48 | label = model_object.name |
---|
49 | for item in detail: |
---|
50 | label += " %s=%s" % (item, str(detail[item])) |
---|
51 | |
---|
52 | return label |
---|
53 | |
---|
54 | class Model(Plottable): |
---|
55 | """ |
---|
56 | Prototype pyre model plottable. |
---|
57 | |
---|
58 | Being 'model' rather than 'data' means that it will have certain style |
---|
59 | attributes (e.g., lines rather than symbols) and respond in certain ways |
---|
60 | to the callbacks (e.g., by recomputing the model when the limits change). |
---|
61 | |
---|
62 | We have the following attributes: |
---|
63 | |
---|
64 | - inventory: manage user visible state |
---|
65 | - changed(): return true if a replot is required. |
---|
66 | - x,y = data(): return the plottable data. |
---|
67 | |
---|
68 | """ |
---|
69 | def __init__(self, component): |
---|
70 | Plottable.__init__(self) |
---|
71 | self.component = component |
---|
72 | self._xaxis, symbol, self._xunit = component.xaxis() |
---|
73 | self._yaxis, symbol, self._yunit = component.yaxis() |
---|
74 | |
---|
75 | self.min = 0.1 |
---|
76 | self.max = 1.0 |
---|
77 | self.n = 20 |
---|
78 | |
---|
79 | self.has_changed = False |
---|
80 | self.dirty = True |
---|
81 | |
---|
82 | # Fill inventory backup |
---|
83 | # Pyre Trait have no way to notify us that |
---|
84 | # it has changed. Hack it for now. |
---|
85 | self.value_dict = {} |
---|
86 | for item in self.component.properties(): |
---|
87 | if not item.name.startswith("help"): |
---|
88 | descr = self.component.inventory.getTraitDescriptor(item.name) |
---|
89 | self.value_dict[item.name] = descr.value |
---|
90 | |
---|
91 | def __setattr__(self, key, value): |
---|
92 | if key in ["min", "max", "n"]: |
---|
93 | self.has_changed = True |
---|
94 | |
---|
95 | self.__dict__[key] = value |
---|
96 | |
---|
97 | def changed(self): |
---|
98 | """ |
---|
99 | Return true if a replot is required. |
---|
100 | |
---|
101 | Queries our inventory and the inventory of our attached |
---|
102 | model to see if any aspects of the model have changed, forcing a |
---|
103 | replot. Specialized plottables will be able to query the inventory |
---|
104 | intelligently. |
---|
105 | |
---|
106 | changed() could also be used to provide 'holographic update', where |
---|
107 | the first pass does very coarse sampling, and this gets refined at |
---|
108 | the next idle. That way we can remain responsive to the mouse while |
---|
109 | expensive calculations go on. |
---|
110 | """ |
---|
111 | self.dirty = self.dirty or self.has_changed or self.component.changed() |
---|
112 | return self.dirty |
---|
113 | |
---|
114 | def data(self): |
---|
115 | """ |
---|
116 | Return the plottable data. This will automatically respond to |
---|
117 | changes in inventory by recalculating. |
---|
118 | |
---|
119 | The plottables graph does not use this function directly, but |
---|
120 | rather calls it through render. Later the default render for 1D |
---|
121 | theory style may want to call back to data. |
---|
122 | """ |
---|
123 | if self.dirty: |
---|
124 | import numpy as nx |
---|
125 | self.x = nx.linspace(self.min, self.max, self.n) |
---|
126 | self.y = [] |
---|
127 | import math |
---|
128 | for x in self.x: |
---|
129 | self.y.append(math.log(self.component(x))) |
---|
130 | self.dirty = False |
---|
131 | return self.x, self.y |
---|
132 | |
---|
133 | def update_xlim(self, lo, hi): |
---|
134 | """ |
---|
135 | Record the change in the graph limits. This updates the xrange |
---|
136 | stored in the model plottable inventory. Later, when the application |
---|
137 | is idle, obj.changed() will note the change in inventory and ask |
---|
138 | the data to recalculate. |
---|
139 | """ |
---|
140 | self.inventory.min = lo |
---|
141 | self.inventory.max = hi |
---|
142 | |
---|
143 | def render(self, plot, **kw): |
---|
144 | """ |
---|
145 | Add the appropriate lines to the plot for the component. |
---|
146 | |
---|
147 | The plot interface implements generic styles for particular types |
---|
148 | of data and formalizes the callback mechanism. See the methods |
---|
149 | available in mplplot for details. |
---|
150 | """ |
---|
151 | Plottable.render(self, plot) |
---|
152 | x, y = self.data() |
---|
153 | plot.xaxis(self._xaxis, self._xunit) |
---|
154 | plot.yaxis(self._yaxis, self._yunit) |
---|
155 | plot.curve(x, y, **kw) |
---|
156 | #plot.connect('xlim',self.update_xlim) |
---|
157 | |
---|
158 | @classmethod |
---|
159 | def labels(cls, collection): |
---|
160 | """Build a label mostly unique within a collection""" |
---|
161 | map = {} |
---|
162 | for item in collection: |
---|
163 | map[item] = label(item, collection) |
---|
164 | return map |
---|