[ae3ce4e] | 1 | """ |
---|
| 2 | plottables.pyre is a module for registering pyre objects as plottables. |
---|
| 3 | |
---|
| 4 | Uses plottables from the reflectivity repository |
---|
| 5 | Plottables require Python 2.5 |
---|
| 6 | |
---|
| 7 | """ |
---|
| 8 | from plottables import Plottable |
---|
| 9 | |
---|
| 10 | def label(model, collection): |
---|
| 11 | """Build a label mostly unique within a collection""" |
---|
| 12 | # Find all items in the collection of the same type |
---|
| 13 | conflicts = [] |
---|
| 14 | |
---|
| 15 | model_object = model.component |
---|
| 16 | |
---|
| 17 | for item in collection: |
---|
| 18 | if item.component.name == model_object.name: |
---|
| 19 | conflicts.append(item.component) |
---|
| 20 | |
---|
| 21 | # If no conflict, return name |
---|
| 22 | if len(conflicts) == 0: |
---|
| 23 | return model_object.name |
---|
| 24 | |
---|
| 25 | # Fill out the usual detail from the inventory |
---|
| 26 | detail = {} |
---|
| 27 | #for item in model_object.properties(): |
---|
| 28 | # if not item.name.startswith("help"): |
---|
| 29 | # detail[item.name] = item.name |
---|
| 30 | |
---|
| 31 | # Check which fields differ (only to the first level!) |
---|
| 32 | for c in conflicts: |
---|
| 33 | |
---|
| 34 | # Loop through the local properties and find differences |
---|
| 35 | for item in model_object.properties(): |
---|
| 36 | if not item.name.startswith("help"): |
---|
| 37 | |
---|
| 38 | # Check common parameters for now |
---|
| 39 | if hasattr(c, item.name) and hasattr(model_object, item.name): |
---|
| 40 | c_val = getattr(c, item.name) |
---|
| 41 | o_val = getattr(model_object, item.name) |
---|
| 42 | |
---|
| 43 | if not c_val == o_val: |
---|
| 44 | detail[item.name] = o_val |
---|
| 45 | |
---|
| 46 | # Build a label out of the distinctions |
---|
| 47 | # TODO: how do we force natural order traversal on detail keys? |
---|
| 48 | label = model_object.name |
---|
| 49 | for item in detail: |
---|
| 50 | label += " %s=%s" % (item, str(detail[item])) |
---|
| 51 | |
---|
| 52 | return label |
---|
| 53 | |
---|
| 54 | class Model(Plottable): |
---|
| 55 | """ |
---|
| 56 | Prototype pyre model plottable. |
---|
| 57 | |
---|
| 58 | Being 'model' rather than 'data' means that it will have certain style |
---|
| 59 | attributes (e.g., lines rather than symbols) and respond in certain ways |
---|
| 60 | to the callbacks (e.g., by recomputing the model when the limits change). |
---|
| 61 | |
---|
| 62 | We have the following attributes: |
---|
| 63 | |
---|
| 64 | - inventory: manage user visible state |
---|
| 65 | - changed(): return true if a replot is required. |
---|
| 66 | - x,y = data(): return the plottable data. |
---|
| 67 | |
---|
| 68 | """ |
---|
| 69 | def __init__(self, component): |
---|
| 70 | Plottable.__init__(self) |
---|
| 71 | self.component = component |
---|
| 72 | self._xaxis, symbol, self._xunit = component.xaxis() |
---|
| 73 | self._yaxis, symbol, self._yunit = component.yaxis() |
---|
| 74 | |
---|
| 75 | self.min = 0.1 |
---|
| 76 | self.max = 1.0 |
---|
| 77 | self.n = 20 |
---|
| 78 | |
---|
| 79 | self.has_changed = False |
---|
| 80 | self.dirty = True |
---|
| 81 | |
---|
| 82 | # Fill inventory backup |
---|
| 83 | # Pyre Trait have no way to notify us that |
---|
| 84 | # it has changed. Hack it for now. |
---|
| 85 | self.value_dict = {} |
---|
| 86 | for item in self.component.properties(): |
---|
| 87 | if not item.name.startswith("help"): |
---|
| 88 | descr = self.component.inventory.getTraitDescriptor(item.name) |
---|
| 89 | self.value_dict[item.name] = descr.value |
---|
| 90 | |
---|
| 91 | def __setattr__(self, key, value): |
---|
| 92 | if key in ["min", "max", "n"]: |
---|
| 93 | self.has_changed = True |
---|
| 94 | |
---|
| 95 | self.__dict__[key] = value |
---|
| 96 | |
---|
| 97 | def changed(self): |
---|
| 98 | """ |
---|
| 99 | Return true if a replot is required. |
---|
| 100 | |
---|
| 101 | Queries our inventory and the inventory of our attached |
---|
| 102 | model to see if any aspects of the model have changed, forcing a |
---|
| 103 | replot. Specialized plottables will be able to query the inventory |
---|
| 104 | intelligently. |
---|
| 105 | |
---|
| 106 | changed() could also be used to provide 'holographic update', where |
---|
| 107 | the first pass does very coarse sampling, and this gets refined at |
---|
| 108 | the next idle. That way we can remain responsive to the mouse while |
---|
| 109 | expensive calculations go on. |
---|
| 110 | """ |
---|
| 111 | self.dirty = self.dirty or self.has_changed or self.component.changed() |
---|
| 112 | return self.dirty |
---|
| 113 | |
---|
| 114 | def data(self): |
---|
| 115 | """ |
---|
| 116 | Return the plottable data. This will automatically respond to |
---|
| 117 | changes in inventory by recalculating. |
---|
| 118 | |
---|
| 119 | The plottables graph does not use this function directly, but |
---|
| 120 | rather calls it through render. Later the default render for 1D |
---|
| 121 | theory style may want to call back to data. |
---|
| 122 | """ |
---|
| 123 | if self.dirty: |
---|
| 124 | import numpy as nx |
---|
| 125 | self.x = nx.linspace(self.min, self.max, self.n) |
---|
| 126 | self.y = [] |
---|
| 127 | import math |
---|
| 128 | for x in self.x: |
---|
| 129 | self.y.append(math.log(self.component(x))) |
---|
| 130 | self.dirty = False |
---|
| 131 | return self.x, self.y |
---|
| 132 | |
---|
| 133 | def update_xlim(self, lo, hi): |
---|
| 134 | """ |
---|
| 135 | Record the change in the graph limits. This updates the xrange |
---|
| 136 | stored in the model plottable inventory. Later, when the application |
---|
| 137 | is idle, obj.changed() will note the change in inventory and ask |
---|
| 138 | the data to recalculate. |
---|
| 139 | """ |
---|
| 140 | self.inventory.min = lo |
---|
| 141 | self.inventory.max = hi |
---|
| 142 | |
---|
| 143 | def render(self, plot, **kw): |
---|
| 144 | """ |
---|
| 145 | Add the appropriate lines to the plot for the component. |
---|
| 146 | |
---|
| 147 | The plot interface implements generic styles for particular types |
---|
| 148 | of data and formalizes the callback mechanism. See the methods |
---|
| 149 | available in mplplot for details. |
---|
| 150 | """ |
---|
| 151 | Plottable.render(self, plot) |
---|
| 152 | x, y = self.data() |
---|
| 153 | plot.xaxis(self._xaxis, self._xunit) |
---|
| 154 | plot.yaxis(self._yaxis, self._yunit) |
---|
| 155 | plot.curve(x, y, **kw) |
---|
| 156 | #plot.connect('xlim',self.update_xlim) |
---|
| 157 | |
---|
| 158 | @classmethod |
---|
| 159 | def labels(cls, collection): |
---|
| 160 | """Build a label mostly unique within a collection""" |
---|
| 161 | map = {} |
---|
| 162 | for item in collection: |
---|
| 163 | map[item] = label(item, collection) |
---|
| 164 | return map |
---|