1 | <html> |
---|
2 | |
---|
3 | <head> |
---|
4 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
5 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
6 | |
---|
7 | </head> |
---|
8 | |
---|
9 | <body lang=EN-US> |
---|
10 | |
---|
11 | <div class=WordSection1> |
---|
12 | |
---|
13 | <p class=MsoNormal><span style='font-size:16.0pt;line-height:115%;font-family: |
---|
14 | "Times New Roman","serif"'><h4>Smear Computation </h4></span></p> |
---|
15 | |
---|
16 | |
---|
17 | <ul style='margin-top:0in' type=disc> |
---|
18 | <li class=MsoNormal style='line-height:115%'><a href="#Slit Smear"><b>Slit Smear</b></a> |
---|
19 | </li> |
---|
20 | <li class=MsoNormal style='line-height:115%'><a href="#Pinhole Smear"><b>Pinhole Smear</b></a> |
---|
21 | </li> |
---|
22 | <li class=MsoNormal style='line-height:115%'><a href="#2D Smear"><b>2D Smear</b></a> |
---|
23 | </li> |
---|
24 | </ul> |
---|
25 | |
---|
26 | <p class=MsoListParagraph><span style='font-size:14.0pt;line-height:115%; |
---|
27 | font-family:"Times New Roman","serif"'><h5><a name="Slit Smear">Slit Smear</a></h5></span></p> |
---|
28 | |
---|
29 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The sit |
---|
30 | smeared scattering intensity for SANS is defined by</span></p> |
---|
31 | |
---|
32 | <p class=MsoNormal><img width=349 height=49 |
---|
33 | src="./img/sm_image002.gif" align=left hspace=12></p> |
---|
34 | |
---|
35 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> |
---|
36 | 1)</span><br clear=all> |
---|
37 | <span style='font-family:"Times New Roman","serif"'>where Norm = <span |
---|
38 | style='position:relative;top:15.0pt'><img width=137 height=49 |
---|
39 | src="./img/sm_image003.gif"></span>.</span></p> |
---|
40 | |
---|
41 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
42 | functions <span style='position:relative;top:6.0pt'><img width=43 height=25 |
---|
43 | src="./img/sm_image004.gif"></span>and <span style='position: |
---|
44 | relative;top:6.0pt'><img width=43 height=25 |
---|
45 | src="./img/sm_image005.gif"></span>refer to the slit width weighting |
---|
46 | function and the slit height weighting determined at the q point, respectively. |
---|
47 | Here, we assumes that the weighting function is described by a rectangular |
---|
48 | function, i.e.,</span></p> |
---|
49 | |
---|
50 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=134 |
---|
51 | height=26 src="./img/sm_image006.gif"> |
---|
52 | </span><span style='font-family:"Times New Roman","serif";position:relative; |
---|
53 | top:7.0pt'>2)</span></p> |
---|
54 | |
---|
55 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>and </span></p> |
---|
56 | |
---|
57 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=136 |
---|
58 | height=26 src="./img/sm_image007.gif"></span>, |
---|
59 | <span style='font-family:"Times New Roman","serif"'>3)</span></p> |
---|
60 | |
---|
61 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>so that </span><span |
---|
62 | style='position:relative;top:6.0pt'><img width=58 height=23 |
---|
63 | src="./img/sm_image008.gif"></span> <span style='position:relative; |
---|
64 | top:16.0pt'><img width=76 height=51 src="./img/sm_image009.gif"></span> <span |
---|
65 | style='font-family:"Times New Roman","serif"'>for</span> <span |
---|
66 | style='position:relative;top:3.0pt'><img width=40 height=15 |
---|
67 | src="./img/sm_image010.gif"></span> <span style='font-family: |
---|
68 | "Times New Roman","serif"'>and <i>u</i>. The </span><span style='position:relative; |
---|
69 | top:6.0pt'><img width=28 height=24 src="./img/sm_image011.gif"></span> <span |
---|
70 | style='font-family:"Times New Roman","serif"'>and </span><span |
---|
71 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
72 | src="./img/sm_image012.gif"> </span><span style='font-family: |
---|
73 | "Times New Roman","serif"'>stand for the slit height (FWHM/2) and the slit |
---|
74 | width (FWHM/2) in the q space. Now the integral of Eq. (1) is simplified to</span></p> |
---|
75 | |
---|
76 | <p class=MsoNormal><img width=283 height=52 |
---|
77 | src="./img/sm_image013.gif" align=left hspace=12><span |
---|
78 | style='font-family:"Times New Roman","serif"'> |
---|
79 | 4)</span></p> |
---|
80 | |
---|
81 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"; |
---|
82 | position:relative;top:20.0pt'> </span></p> |
---|
83 | |
---|
84 | <p class=MsoListParagraphCxSpFirst style='margin-left:0in'><b><span |
---|
85 | style='font-family:"Times New Roman","serif"'>Numerical Implementation of Eq. |
---|
86 | (4) </span></b></p> |
---|
87 | |
---|
88 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
89 | style='font-family:"Times New Roman","serif"'>1)<span style='font:7.0pt "Times New Roman"'> |
---|
90 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
91 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
92 | src="./img/sm_image014.gif"></span>= 0 <span style='font-family: |
---|
93 | "Times New Roman","serif"'>and </span><span style='position:relative; |
---|
94 | top:6.0pt'><img width=28 height=24 src="./img/sm_image015.gif"></span> = |
---|
95 | <span style='font-family:"Times New Roman","serif"'>constant:</span></p> |
---|
96 | |
---|
97 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
98 | <img src="./img/sm_image016.gif"></p> |
---|
99 | |
---|
100 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
101 | style='font-family:"Times New Roman","serif"'>For discrete q values, at the q |
---|
102 | values from the data points and at the q values extended up to q<sub>N</sub>= |
---|
103 | q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img width=28 |
---|
104 | height=24 src="./img/sm_image011.gif"></span><span |
---|
105 | style='font-family:"Times New Roman","serif"'>, the smeared intensity can be |
---|
106 | calculated approximately,</span></p> |
---|
107 | |
---|
108 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><img |
---|
109 | src="./img/sm_image017.gif">. |
---|
110 | <span style='font-family:"Times New Roman","serif"'>5)</span></p> |
---|
111 | |
---|
112 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
113 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
114 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
115 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
116 | style='font-family:"Times New Roman","serif"'>j < i</span></i><span |
---|
117 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
118 | |
---|
119 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
120 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
121 | |
---|
122 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
123 | style='font-family:"Times New Roman","serif"'>2)<span style='font:7.0pt "Times New Roman"'> |
---|
124 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
125 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
126 | src="./img/sm_image014.gif"></span>= <span style='font-family: |
---|
127 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
128 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
129 | src="./img/sm_image015.gif"></span> = <span style='font-family: |
---|
130 | "Times New Roman","serif"'>0:</span></p> |
---|
131 | |
---|
132 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
133 | style='font-family:"Times New Roman","serif"'>Similarly to 1), we get</span></p> |
---|
134 | |
---|
135 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
136 | <img src="./img/sm_image019.gif"> |
---|
137 | <span style='font-family:"Times New Roman","serif"'>6)</span></p> |
---|
138 | |
---|
139 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
140 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
141 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
142 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
143 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
144 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
145 | width=28 height=24 src="./img/sm_image012.gif"></span>. <span |
---|
146 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
147 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
148 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
149 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
150 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
151 | |
---|
152 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> |
---|
153 | |
---|
154 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
155 | style='font-family:"Times New Roman","serif"'>3)<span style='font:7.0pt "Times New Roman"'> |
---|
156 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
157 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
158 | src="./img/sm_image014.gif"></span>= <span style='font-family: |
---|
159 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
160 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
161 | src="./img/sm_image015.gif"></span> = <span style='font-family: |
---|
162 | "Times New Roman","serif"'>constant:</span></p> |
---|
163 | |
---|
164 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
165 | style='font-family:"Times New Roman","serif"'>This case, the best way is to |
---|
166 | perform the integration, Eq. (1), numerically for both slit height and width. |
---|
167 | However, the numerical integration is not correct enough unless given a large |
---|
168 | number of iteration, say at least 10000 by 10000 for each element of the matrix |
---|
169 | W, which will take minutes and minutes to finish the calculation for a set of |
---|
170 | typical SANS data. An alternative way which is correct for slit width << |
---|
171 | slit hight, is used in the SANSView: This method is a mixed method that |
---|
172 | combines the method 1) with the numerical integration for the slit width.</span></p> |
---|
173 | |
---|
174 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
175 | </p> |
---|
176 | |
---|
177 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
178 | <img src="./img/sm_image020.gif"> <span style='font-family: |
---|
179 | "Times New Roman","serif"'>(7)</span></p> |
---|
180 | |
---|
181 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
182 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
183 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
184 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
185 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
186 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
187 | width=28 height=24 src="./img/sm_image012.gif"></span>. <span |
---|
188 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
189 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
190 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
191 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
192 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>. </span></p> |
---|
193 | |
---|
194 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
195 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
196 | |
---|
197 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
198 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
199 | |
---|
200 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
201 | 115%;font-family:"Times New Roman","serif"'><h5><a name="Pinhole Smear">Pinhole Smear</a></h5></span></p> |
---|
202 | |
---|
203 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
204 | pinhole smearing computation is done similar to the Case 2) above except that |
---|
205 | the weight function used was the Gaussian function, so that the Eq. 6) for this |
---|
206 | case becomes</span></p> |
---|
207 | |
---|
208 | <p class=MsoNormal><img src="./img/sm_image021.gif"><span |
---|
209 | style='font-family:"Times New Roman","serif"'> (8)</span></p> |
---|
210 | |
---|
211 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>For all |
---|
212 | the cases above, the weighting matrix <i>W</i> is calculated when the smearing |
---|
213 | is called at the first time, and it includes the ~ 60 q values (finely binned |
---|
214 | evenly) below (>0) and above the q range of data in order to cover all data |
---|
215 | points of the smearing computation for a given model and for a given slit size. |
---|
216 | The <i>Norm</i> factor is found numerically with the weighting matrix, and |
---|
217 | considered on <i>I<sub>s</sub></i> computation.</span></p> |
---|
218 | |
---|
219 | <p class=MsoListParagraphCxSpFirst style='margin-left:.25in'><span |
---|
220 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
221 | |
---|
222 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
223 | 115%;font-family:"Times New Roman","serif"'><h5><a name="2D Smear">2D Smear</a></h5></span></p> |
---|
224 | |
---|
225 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
226 | 2D smearing computation is done similar to the 1D pinhole smearing above |
---|
227 | except that the weight function used was the 2D elliptical Gaussian function</span></p> |
---|
228 | |
---|
229 | <p class=MsoNormal><img src="./img/sm_image022.gif"><span |
---|
230 | style='font-family:"Times New Roman","serif"'> (9)</span></p> |
---|
231 | |
---|
232 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq |
---|
233 | (9), x<sub>0</sub> = qcos</span><span style='font-family:Symbol'>(theta)</span><span |
---|
234 | style='font-family:"Times New Roman","serif"'> and y<sub>0</sub>=qsin</span><span |
---|
235 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
236 | , and the primed axes are in the coordinate rotated by an angle </span><span |
---|
237 | style='font-family:Symbol'>theta</span><span style='font-family:"Times New Roman","serif"'> |
---|
238 | around z-axis (below) so that x<sub>0</sub> = x<sub>0</sub>cos</span><span |
---|
239 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
240 | sin</span><span style='font-family:Symbol'>(theta) </span><span style='font-family: |
---|
241 | "Times New Roman","serif"'>and y<sub>0</sub> = -x<sub>0</sub>sin</span><span |
---|
242 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
243 | cos</span><span style='font-family:Symbol'>(theta) .</span><span style='font-family: |
---|
244 | "Times New Roman","serif"'> Note that the rotation angle is zero for x-y |
---|
245 | symmetric elliptical Gaussian distribution</span><span style='font-family:Symbol'>. |
---|
246 | </span><span style='font-family:"Times New Roman","serif"'>The A is a |
---|
247 | normalization factor.</span></p> |
---|
248 | |
---|
249 | <p class=MsoNormal align=center style='text-align:center'><span |
---|
250 | style='font-family:"Times New Roman","serif"'><img width=439 height=376 |
---|
251 | id="Object 1" src="./img/sm_image023.gif"></span></p> |
---|
252 | |
---|
253 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> </span></p> |
---|
254 | |
---|
255 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we |
---|
256 | consider a numerical integration where each bins in </span><span |
---|
257 | style='font-family:Symbol'>THETA</span><span style='font-family:"Times New Roman","serif"'> |
---|
258 | and R are <b>evenly </b>(this is to simplify the equation below) distributed by |
---|
259 | </span><span style='font-family:Symbol'>Delta_THETA </span><span style='font-family: |
---|
260 | "Times New Roman","serif"'>and </span><span style='font-family:Symbol'>Delta</span><span |
---|
261 | style='font-family:"Times New Roman","serif"'>R, respectively, and it is |
---|
262 | assumed that I(x, y) is constant within the bins which in turn becomes</span></p> |
---|
263 | |
---|
264 | <p class=MsoNormal><img src="./img/sm_image024.gif"></p> |
---|
265 | |
---|
266 | <p class=MsoNormal> <span |
---|
267 | style='font-family:"Times New Roman","serif"'>(10)</span></p> |
---|
268 | |
---|
269 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Since we |
---|
270 | have found the weighting factor on each bin points, it is convenient to |
---|
271 | transform x-y back to x-y coordinate (rotating it by -</span><span |
---|
272 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
273 | around z axis). Then, for the polar symmetric smear,</span></p> |
---|
274 | |
---|
275 | <p class=MsoNormal><img src="./img/sm_image025.gif"><span |
---|
276 | style='position:relative;top:35.0pt'> </span>(11)</p> |
---|
277 | |
---|
278 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
279 | |
---|
280 | <p class=MsoNormal><img src="./img/sm_image026.gif"></p> |
---|
281 | |
---|
282 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>while |
---|
283 | for the x-y symmetric smear,</span></p> |
---|
284 | |
---|
285 | <p class=MsoNormal><img src="./img/sm_image027.gif"><span |
---|
286 | style='font-family:"Times New Roman","serif"'> (12)</span></p> |
---|
287 | |
---|
288 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
289 | |
---|
290 | <p class=MsoNormal><img src="./img/sm_image028.gif"></p> |
---|
291 | |
---|
292 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Here, the |
---|
293 | current version of the SANSVIEW uses the Eq. (11) for 2D smearing assuming that |
---|
294 | all the Gaussian weighting functions are aligned in the polar coordinate. </span></p> |
---|
295 | <p> In the control panel, the higher accuracy indicates more and finer binnng points |
---|
296 | so that it costs more in time. </p> |
---|
297 | |
---|
298 | |
---|
299 | </div> |
---|
300 | |
---|
301 | </body> |
---|
302 | |
---|
303 | </html> |
---|