[6e8b436] | 1 | |
---|
| 2 | <head> |
---|
| 3 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
| 4 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
| 5 | |
---|
| 6 | </head> |
---|
| 7 | |
---|
| 8 | <body lang=EN-US> |
---|
| 9 | |
---|
| 10 | <div class=WordSection1> |
---|
| 11 | |
---|
| 12 | <p class=MsoNormal><span style='font-size:16.0pt;line-height:115%;font-family: |
---|
[5cc39f10] | 13 | "Times New Roman","serif"'><h4>Smear Computation </h4></span></p> |
---|
[17574ae] | 14 | |
---|
[6e8b436] | 15 | |
---|
| 16 | <ul style='margin-top:0in' type=disc> |
---|
| 17 | <li class=MsoNormal style='line-height:115%'><a href="#Slit Smear"><b>Slit Smear</b></a> |
---|
| 18 | </li> |
---|
| 19 | <li class=MsoNormal style='line-height:115%'><a href="#Pinhole Smear"><b>Pinhole Smear</b></a> |
---|
| 20 | </li> |
---|
| 21 | <li class=MsoNormal style='line-height:115%'><a href="#2D Smear"><b>2D Smear</b></a> |
---|
| 22 | </li> |
---|
| 23 | </ul> |
---|
[17574ae] | 24 | |
---|
[6e8b436] | 25 | <p class=MsoListParagraph><span style='font-size:14.0pt;line-height:115%; |
---|
[5cc39f10] | 26 | font-family:"Times New Roman","serif"'><h5><a name="Slit Smear">Slit Smear</a></h5></span></p> |
---|
[6e8b436] | 27 | |
---|
| 28 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The sit |
---|
| 29 | smeared scattering intensity for SANS is defined by</span></p> |
---|
| 30 | |
---|
[318b5bbb] | 31 | <p class=MsoNormal><img |
---|
[17574ae] | 32 | src="./img/sm_image002.gif" align=left hspace=12></p> |
---|
[6e8b436] | 33 | |
---|
[17574ae] | 34 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> |
---|
[318b5bbb] | 35 | ---- 1)</span><br clear=all> |
---|
[6e8b436] | 36 | <span style='font-family:"Times New Roman","serif"'>where Norm = <span |
---|
[318b5bbb] | 37 | style='position:relative;top:15.0pt'><img |
---|
[17574ae] | 38 | src="./img/sm_image003.gif"></span>.</span></p> |
---|
[318b5bbb] | 39 | <br> |
---|
[6e8b436] | 40 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
[318b5bbb] | 41 | functions <span style='position:relative;top:6.0pt'><img |
---|
| 42 | src="./img/sm_image004.gif"></span> and <span style='position: |
---|
| 43 | relative;top:6.0pt'><img |
---|
| 44 | src="./img/sm_image005.gif"></span> refer to the slit width weighting |
---|
[6e8b436] | 45 | function and the slit height weighting determined at the q point, respectively. |
---|
[17574ae] | 46 | Here, we assumes that the weighting function is described by a rectangular |
---|
[6e8b436] | 47 | function, i.e.,</span></p> |
---|
| 48 | |
---|
[318b5bbb] | 49 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img |
---|
| 50 | src="./img/sm_image006.gif"> |
---|
[17574ae] | 51 | </span><span style='font-family:"Times New Roman","serif";position:relative; |
---|
[318b5bbb] | 52 | top:7.0pt'> ---- 2)</span></p> |
---|
[6e8b436] | 53 | |
---|
| 54 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>and </span></p> |
---|
| 55 | |
---|
[318b5bbb] | 56 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img |
---|
| 57 | src="./img/sm_image007.gif"></span>, |
---|
| 58 | <span style='font-family:"Times New Roman","serif"'> ---- 3)</span></p> |
---|
| 59 | |
---|
| 60 | <p>so that <img |
---|
| 61 | src="./img/sm_image008.gif"> <img src="./img/sm_image009.gif"> for <img |
---|
| 62 | src="./img/sm_image010.gif"> and <i>u</i>. The <img src="./img/sm_image011.gif"> |
---|
| 63 | and <img src="./img/sm_image012.gif"> stand for the slit height (FWHM/2) and the slit |
---|
[6e8b436] | 64 | width (FWHM/2) in the q space. Now the integral of Eq. (1) is simplified to</span></p> |
---|
| 65 | |
---|
[318b5bbb] | 66 | <p class=MsoNormal><img |
---|
[17574ae] | 67 | src="./img/sm_image013.gif" align=left hspace=12><span |
---|
| 68 | style='font-family:"Times New Roman","serif"'> |
---|
[318b5bbb] | 69 | ---- 4)</span></p> |
---|
[6e8b436] | 70 | |
---|
| 71 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"; |
---|
| 72 | position:relative;top:20.0pt'> </span></p> |
---|
| 73 | |
---|
| 74 | <p class=MsoListParagraphCxSpFirst style='margin-left:0in'><b><span |
---|
| 75 | style='font-family:"Times New Roman","serif"'>Numerical Implementation of Eq. |
---|
| 76 | (4) </span></b></p> |
---|
| 77 | |
---|
| 78 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 79 | style='font-family:"Times New Roman","serif"'>1)<span style='font:7.0pt "Times New Roman"'> |
---|
| 80 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
[318b5bbb] | 81 | style='position:relative;top:6.0pt'><img |
---|
| 82 | src="./img/sm_image012.gif"></span>= 0 <span style='font-family: |
---|
[6e8b436] | 83 | "Times New Roman","serif"'>and </span><span style='position:relative; |
---|
[318b5bbb] | 84 | top:6.0pt'><img src="./img/sm_image011.gif"></span> = |
---|
[6e8b436] | 85 | <span style='font-family:"Times New Roman","serif"'>constant:</span></p> |
---|
| 86 | |
---|
[318b5bbb] | 87 | <p> |
---|
[17574ae] | 88 | <img src="./img/sm_image016.gif"></p> |
---|
[6e8b436] | 89 | |
---|
[318b5bbb] | 90 | <p> For discrete q values, at the q |
---|
[17574ae] | 91 | values from the data points and at the q values extended up to q<sub>N</sub>= |
---|
[318b5bbb] | 92 | q<sub>i</sub> + <img src="./img/sm_image011.gif"> , the smeared intensity can be |
---|
| 93 | calculated approximately, </p> |
---|
[6e8b436] | 94 | |
---|
[318b5bbb] | 95 | <p><img |
---|
[17574ae] | 96 | src="./img/sm_image017.gif">. |
---|
[318b5bbb] | 97 | ---- 5)</p> |
---|
[6e8b436] | 98 | |
---|
| 99 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
[318b5bbb] | 100 | style='position:relative;top:7.0pt'><img |
---|
[17574ae] | 101 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 102 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 103 | style='font-family:"Times New Roman","serif"'>j < i</span></i><span |
---|
| 104 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 105 | |
---|
| 106 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 107 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 108 | |
---|
| 109 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 110 | style='font-family:"Times New Roman","serif"'>2)<span style='font:7.0pt "Times New Roman"'> |
---|
[17574ae] | 111 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
[318b5bbb] | 112 | style='position:relative;top:6.0pt'><img |
---|
| 113 | src="./img/sm_image012.gif"></span>= <span style='font-family: |
---|
[17574ae] | 114 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
[318b5bbb] | 115 | </span><span style='position:relative;top:6.0pt'><img |
---|
| 116 | src="./img/sm_image011.gif"></span> = <span style='font-family: |
---|
[6e8b436] | 117 | "Times New Roman","serif"'>0:</span></p> |
---|
| 118 | |
---|
| 119 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 120 | style='font-family:"Times New Roman","serif"'>Similarly to 1), we get</span></p> |
---|
| 121 | |
---|
| 122 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
[17574ae] | 123 | <img src="./img/sm_image019.gif"> |
---|
[318b5bbb] | 124 | <span style='font-family:"Times New Roman","serif"'> ---- 6)</span></p> |
---|
[6e8b436] | 125 | |
---|
| 126 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
[17574ae] | 127 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
[318b5bbb] | 128 | - </span><span style='position:relative;top:6.0pt'><img |
---|
[17574ae] | 129 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
| 130 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
[6e8b436] | 131 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
[318b5bbb] | 132 | src="./img/sm_image012.gif"></span>. <span |
---|
| 133 | style='position:relative;top:7.0pt'><img |
---|
[17574ae] | 134 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 135 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 136 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 137 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 138 | |
---|
| 139 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> |
---|
| 140 | |
---|
| 141 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 142 | style='font-family:"Times New Roman","serif"'>3)<span style='font:7.0pt "Times New Roman"'> |
---|
[17574ae] | 143 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
[318b5bbb] | 144 | style='position:relative;top:6.0pt'><img |
---|
| 145 | src="./img/sm_image011.gif"></span>= <span style='font-family: |
---|
[17574ae] | 146 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
[318b5bbb] | 147 | </span><span style='position:relative;top:6.0pt'><img |
---|
| 148 | src="./img/sm_image011.gif"></span> = <span style='font-family: |
---|
[6e8b436] | 149 | "Times New Roman","serif"'>constant:</span></p> |
---|
| 150 | |
---|
| 151 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 152 | style='font-family:"Times New Roman","serif"'>This case, the best way is to |
---|
| 153 | perform the integration, Eq. (1), numerically for both slit height and width. |
---|
| 154 | However, the numerical integration is not correct enough unless given a large |
---|
| 155 | number of iteration, say at least 10000 by 10000 for each element of the matrix |
---|
| 156 | W, which will take minutes and minutes to finish the calculation for a set of |
---|
| 157 | typical SANS data. An alternative way which is correct for slit width << |
---|
[17574ae] | 158 | slit hight, is used in the SANSView: This method is a mixed method that |
---|
[6e8b436] | 159 | combines the method 1) with the numerical integration for the slit width.</span></p> |
---|
| 160 | |
---|
| 161 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 162 | </p> |
---|
| 163 | |
---|
| 164 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
[17574ae] | 165 | <img src="./img/sm_image020.gif"> <span style='font-family: |
---|
[318b5bbb] | 166 | "Times New Roman","serif"'> ---- (7)</span></p> |
---|
[6e8b436] | 167 | |
---|
| 168 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
[17574ae] | 169 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
[318b5bbb] | 170 | - </span><span style='position:relative;top:6.0pt'><img |
---|
[17574ae] | 171 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
| 172 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
[6e8b436] | 173 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
[318b5bbb] | 174 | src="./img/sm_image012.gif"></span>. <span |
---|
| 175 | style='position:relative;top:7.0pt'><img |
---|
[17574ae] | 176 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 177 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 178 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 179 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>. </span></p> |
---|
| 180 | |
---|
| 181 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 182 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 183 | |
---|
| 184 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 185 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 186 | |
---|
| 187 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 188 | 115%;font-family:"Times New Roman","serif"'><h5><a name="Pinhole Smear">Pinhole Smear</a></h5></span></p> |
---|
[6e8b436] | 189 | |
---|
| 190 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 191 | pinhole smearing computation is done similar to the Case 2) above except that |
---|
| 192 | the weight function used was the Gaussian function, so that the Eq. 6) for this |
---|
| 193 | case becomes</span></p> |
---|
| 194 | |
---|
[17574ae] | 195 | <p class=MsoNormal><img src="./img/sm_image021.gif"><span |
---|
[318b5bbb] | 196 | style='font-family:"Times New Roman","serif"'> ---- (8)</span></p> |
---|
[6e8b436] | 197 | |
---|
| 198 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>For all |
---|
| 199 | the cases above, the weighting matrix <i>W</i> is calculated when the smearing |
---|
| 200 | is called at the first time, and it includes the ~ 60 q values (finely binned |
---|
| 201 | evenly) below (>0) and above the q range of data in order to cover all data |
---|
| 202 | points of the smearing computation for a given model and for a given slit size. |
---|
[17574ae] | 203 | The <i>Norm</i> factor is found numerically with the weighting matrix, and |
---|
[6e8b436] | 204 | considered on <i>I<sub>s</sub></i> computation.</span></p> |
---|
| 205 | |
---|
| 206 | <p class=MsoListParagraphCxSpFirst style='margin-left:.25in'><span |
---|
| 207 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 208 | |
---|
| 209 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 210 | 115%;font-family:"Times New Roman","serif"'><h5><a name="2D Smear">2D Smear</a></h5></span></p> |
---|
[6e8b436] | 211 | |
---|
| 212 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 213 | 2D smearing computation is done similar to the 1D pinhole smearing above |
---|
| 214 | except that the weight function used was the 2D elliptical Gaussian function</span></p> |
---|
| 215 | |
---|
[17574ae] | 216 | <p class=MsoNormal><img src="./img/sm_image022.gif"><span |
---|
[318b5bbb] | 217 | style='font-family:"Times New Roman","serif"'> ---- (9)</span></p> |
---|
[6e8b436] | 218 | |
---|
| 219 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq |
---|
[318b5bbb] | 220 | (9), x<sub>0</sub> = qcosθ</span><span |
---|
| 221 | style='font-family:"Times New Roman","serif"'> and y<sub>0</sub> = qsinθ</span><span style='font-family:"Times New Roman","serif"'> |
---|
| 222 | , and the primed axes are in the coordinate rotated by an angle θ</span><span style='font-family:"Times New Roman","serif"'> |
---|
| 223 | around z-axis (below) so that x<sub>0</sub> = x<sub>0</sub>cosθ + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
| 224 | sinθ </span><span style='font-family: |
---|
| 225 | "Times New Roman","serif"'>and y<sub>0</sub> = -x<sub>0</sub>sinθ + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
| 226 | cosθ.</span><span style='font-family: |
---|
[6e8b436] | 227 | "Times New Roman","serif"'> Note that the rotation angle is zero for x-y |
---|
[318b5bbb] | 228 | symmetric elliptical Gaussian distribution</span>. |
---|
| 229 | <span style='font-family:"Times New Roman","serif"'>The A is a |
---|
[6e8b436] | 230 | normalization factor.</span></p> |
---|
| 231 | |
---|
| 232 | <p class=MsoNormal align=center style='text-align:center'><span |
---|
[318b5bbb] | 233 | style='font-family:"Times New Roman","serif"'><img |
---|
[17574ae] | 234 | id="Object 1" src="./img/sm_image023.gif"></span></p> |
---|
[6e8b436] | 235 | |
---|
| 236 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 237 | |
---|
| 238 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we |
---|
[318b5bbb] | 239 | consider a numerical integration where each bins in </span> Θ </span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 240 | and R are <b>evenly </b>(this is to simplify the equation below) distributed by |
---|
[318b5bbb] | 241 | </span>ΔΘ </span><span style='font-family: |
---|
| 242 | "Times New Roman","serif"'>and </span> Δ</span><span |
---|
[6e8b436] | 243 | style='font-family:"Times New Roman","serif"'>R, respectively, and it is |
---|
| 244 | assumed that I(x, y) is constant within the bins which in turn becomes</span></p> |
---|
| 245 | |
---|
[17574ae] | 246 | <p class=MsoNormal><img src="./img/sm_image024.gif"></p> |
---|
[6e8b436] | 247 | |
---|
[17574ae] | 248 | <p class=MsoNormal> <span |
---|
[318b5bbb] | 249 | style='font-family:"Times New Roman","serif"'> ---- (10)</span></p> |
---|
[6e8b436] | 250 | |
---|
| 251 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Since we |
---|
| 252 | have found the weighting factor on each bin points, it is convenient to |
---|
[318b5bbb] | 253 | transform x-y back to x-y coordinate (rotating it by -θ</span><span style='font-family:"Times New Roman","serif"'> |
---|
[17574ae] | 254 | around z axis). Then, for the polar symmetric smear,</span></p> |
---|
[6e8b436] | 255 | |
---|
[17574ae] | 256 | <p class=MsoNormal><img src="./img/sm_image025.gif"><span |
---|
[318b5bbb] | 257 | style='position:relative;top:35.0pt'> </span> ---- (11)</p> |
---|
[6e8b436] | 258 | |
---|
| 259 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 260 | |
---|
[318b5bbb] | 261 | <p class=MsoNormal><img src="./img/sm_image026.gif">,</p> |
---|
[6e8b436] | 262 | |
---|
| 263 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>while |
---|
| 264 | for the x-y symmetric smear,</span></p> |
---|
| 265 | |
---|
[17574ae] | 266 | <p class=MsoNormal><img src="./img/sm_image027.gif"><span |
---|
[318b5bbb] | 267 | style='font-family:"Times New Roman","serif"'> ---- (12)</span></p> |
---|
[6e8b436] | 268 | |
---|
| 269 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 270 | |
---|
[17574ae] | 271 | <p class=MsoNormal><img src="./img/sm_image028.gif"></p> |
---|
[6e8b436] | 272 | |
---|
| 273 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Here, the |
---|
| 274 | current version of the SANSVIEW uses the Eq. (11) for 2D smearing assuming that |
---|
| 275 | all the Gaussian weighting functions are aligned in the polar coordinate. </span></p> |
---|
[50764a4] | 276 | <p> In the control panel, the higher accuracy indicates more and finer binnng points |
---|
| 277 | so that it costs more in time. </p> |
---|
| 278 | |
---|
[6e8b436] | 279 | |
---|
| 280 | </div> |
---|
| 281 | |
---|
| 282 | </body> |
---|
| 283 | |
---|