[6e8b436] | 1 | <html> |
---|
| 2 | |
---|
| 3 | <head> |
---|
| 4 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
| 5 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
| 6 | |
---|
| 7 | </head> |
---|
| 8 | |
---|
| 9 | <body lang=EN-US> |
---|
| 10 | |
---|
| 11 | <div class=WordSection1> |
---|
| 12 | |
---|
| 13 | <p class=MsoNormal><span style='font-size:16.0pt;line-height:115%;font-family: |
---|
[5cc39f10] | 14 | "Times New Roman","serif"'><h4>Smear Computation </h4></span></p> |
---|
[17574ae] | 15 | |
---|
[6e8b436] | 16 | |
---|
| 17 | <ul style='margin-top:0in' type=disc> |
---|
| 18 | <li class=MsoNormal style='line-height:115%'><a href="#Slit Smear"><b>Slit Smear</b></a> |
---|
| 19 | </li> |
---|
| 20 | <li class=MsoNormal style='line-height:115%'><a href="#Pinhole Smear"><b>Pinhole Smear</b></a> |
---|
| 21 | </li> |
---|
| 22 | <li class=MsoNormal style='line-height:115%'><a href="#2D Smear"><b>2D Smear</b></a> |
---|
| 23 | </li> |
---|
| 24 | </ul> |
---|
[17574ae] | 25 | |
---|
[6e8b436] | 26 | <p class=MsoListParagraph><span style='font-size:14.0pt;line-height:115%; |
---|
[5cc39f10] | 27 | font-family:"Times New Roman","serif"'><h5><a name="Slit Smear">Slit Smear</a></h5></span></p> |
---|
[6e8b436] | 28 | |
---|
| 29 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The sit |
---|
| 30 | smeared scattering intensity for SANS is defined by</span></p> |
---|
| 31 | |
---|
| 32 | <p class=MsoNormal><img width=349 height=49 |
---|
[17574ae] | 33 | src="./img/sm_image002.gif" align=left hspace=12></p> |
---|
[6e8b436] | 34 | |
---|
[17574ae] | 35 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> |
---|
| 36 | 1)</span><br clear=all> |
---|
[6e8b436] | 37 | <span style='font-family:"Times New Roman","serif"'>where Norm = <span |
---|
| 38 | style='position:relative;top:15.0pt'><img width=137 height=49 |
---|
[17574ae] | 39 | src="./img/sm_image003.gif"></span>.</span></p> |
---|
[6e8b436] | 40 | |
---|
| 41 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 42 | functions <span style='position:relative;top:6.0pt'><img width=43 height=25 |
---|
[17574ae] | 43 | src="./img/sm_image004.gif"></span>and <span style='position: |
---|
[6e8b436] | 44 | relative;top:6.0pt'><img width=43 height=25 |
---|
[17574ae] | 45 | src="./img/sm_image005.gif"></span>refer to the slit width weighting |
---|
[6e8b436] | 46 | function and the slit height weighting determined at the q point, respectively. |
---|
[17574ae] | 47 | Here, we assumes that the weighting function is described by a rectangular |
---|
[6e8b436] | 48 | function, i.e.,</span></p> |
---|
| 49 | |
---|
| 50 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=134 |
---|
[17574ae] | 51 | height=26 src="./img/sm_image006.gif"> |
---|
| 52 | </span><span style='font-family:"Times New Roman","serif";position:relative; |
---|
[6e8b436] | 53 | top:7.0pt'>2)</span></p> |
---|
| 54 | |
---|
| 55 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>and </span></p> |
---|
| 56 | |
---|
| 57 | <p class=MsoNormal><span style='position:relative;top:7.0pt'><img width=136 |
---|
[17574ae] | 58 | height=26 src="./img/sm_image007.gif"></span>, |
---|
| 59 | <span style='font-family:"Times New Roman","serif"'>3)</span></p> |
---|
[6e8b436] | 60 | |
---|
| 61 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>so that </span><span |
---|
| 62 | style='position:relative;top:6.0pt'><img width=58 height=23 |
---|
[17574ae] | 63 | src="./img/sm_image008.gif"></span> <span style='position:relative; |
---|
| 64 | top:16.0pt'><img width=76 height=51 src="./img/sm_image009.gif"></span> <span |
---|
| 65 | style='font-family:"Times New Roman","serif"'>for</span> <span |
---|
[6e8b436] | 66 | style='position:relative;top:3.0pt'><img width=40 height=15 |
---|
[17574ae] | 67 | src="./img/sm_image010.gif"></span> <span style='font-family: |
---|
[6e8b436] | 68 | "Times New Roman","serif"'>and <i>u</i>. The </span><span style='position:relative; |
---|
[17574ae] | 69 | top:6.0pt'><img width=28 height=24 src="./img/sm_image011.gif"></span> <span |
---|
[6e8b436] | 70 | style='font-family:"Times New Roman","serif"'>and </span><span |
---|
| 71 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 72 | src="./img/sm_image012.gif"> </span><span style='font-family: |
---|
[6e8b436] | 73 | "Times New Roman","serif"'>stand for the slit height (FWHM/2) and the slit |
---|
| 74 | width (FWHM/2) in the q space. Now the integral of Eq. (1) is simplified to</span></p> |
---|
| 75 | |
---|
| 76 | <p class=MsoNormal><img width=283 height=52 |
---|
[17574ae] | 77 | src="./img/sm_image013.gif" align=left hspace=12><span |
---|
| 78 | style='font-family:"Times New Roman","serif"'> |
---|
| 79 | 4)</span></p> |
---|
[6e8b436] | 80 | |
---|
| 81 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"; |
---|
| 82 | position:relative;top:20.0pt'> </span></p> |
---|
| 83 | |
---|
| 84 | <p class=MsoListParagraphCxSpFirst style='margin-left:0in'><b><span |
---|
| 85 | style='font-family:"Times New Roman","serif"'>Numerical Implementation of Eq. |
---|
| 86 | (4) </span></b></p> |
---|
| 87 | |
---|
| 88 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 89 | style='font-family:"Times New Roman","serif"'>1)<span style='font:7.0pt "Times New Roman"'> |
---|
| 90 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
| 91 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 92 | src="./img/sm_image014.gif"></span>= 0 <span style='font-family: |
---|
[6e8b436] | 93 | "Times New Roman","serif"'>and </span><span style='position:relative; |
---|
[17574ae] | 94 | top:6.0pt'><img width=28 height=24 src="./img/sm_image015.gif"></span> = |
---|
[6e8b436] | 95 | <span style='font-family:"Times New Roman","serif"'>constant:</span></p> |
---|
| 96 | |
---|
| 97 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
[17574ae] | 98 | <img src="./img/sm_image016.gif"></p> |
---|
[6e8b436] | 99 | |
---|
| 100 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 101 | style='font-family:"Times New Roman","serif"'>For discrete q values, at the q |
---|
[17574ae] | 102 | values from the data points and at the q values extended up to q<sub>N</sub>= |
---|
[6e8b436] | 103 | q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img width=28 |
---|
[17574ae] | 104 | height=24 src="./img/sm_image011.gif"></span><span |
---|
[6e8b436] | 105 | style='font-family:"Times New Roman","serif"'>, the smeared intensity can be |
---|
| 106 | calculated approximately,</span></p> |
---|
| 107 | |
---|
| 108 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><img |
---|
[17574ae] | 109 | src="./img/sm_image017.gif">. |
---|
| 110 | <span style='font-family:"Times New Roman","serif"'>5)</span></p> |
---|
[6e8b436] | 111 | |
---|
| 112 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 113 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
[17574ae] | 114 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 115 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 116 | style='font-family:"Times New Roman","serif"'>j < i</span></i><span |
---|
| 117 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 118 | |
---|
| 119 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 120 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 121 | |
---|
| 122 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 123 | style='font-family:"Times New Roman","serif"'>2)<span style='font:7.0pt "Times New Roman"'> |
---|
[17574ae] | 124 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
[6e8b436] | 125 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 126 | src="./img/sm_image014.gif"></span>= <span style='font-family: |
---|
| 127 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
[6e8b436] | 128 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 129 | src="./img/sm_image015.gif"></span> = <span style='font-family: |
---|
[6e8b436] | 130 | "Times New Roman","serif"'>0:</span></p> |
---|
| 131 | |
---|
| 132 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 133 | style='font-family:"Times New Roman","serif"'>Similarly to 1), we get</span></p> |
---|
| 134 | |
---|
| 135 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
[17574ae] | 136 | <img src="./img/sm_image019.gif"> |
---|
| 137 | <span style='font-family:"Times New Roman","serif"'>6)</span></p> |
---|
[6e8b436] | 138 | |
---|
| 139 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
[17574ae] | 140 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
[6e8b436] | 141 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 142 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
| 143 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
[6e8b436] | 144 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
[17574ae] | 145 | width=28 height=24 src="./img/sm_image012.gif"></span>. <span |
---|
[6e8b436] | 146 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
[17574ae] | 147 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 148 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 149 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 150 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>.</span></p> |
---|
| 151 | |
---|
| 152 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> </p> |
---|
| 153 | |
---|
| 154 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in;text-indent:-.25in'><span |
---|
| 155 | style='font-family:"Times New Roman","serif"'>3)<span style='font:7.0pt "Times New Roman"'> |
---|
[17574ae] | 156 | </span></span><span style='font-family:"Times New Roman","serif"'>For </span><span |
---|
[6e8b436] | 157 | style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 158 | src="./img/sm_image014.gif"></span>= <span style='font-family: |
---|
| 159 | "Times New Roman","serif"'>constant </span> <span style='font-family:"Times New Roman","serif"'>and |
---|
[6e8b436] | 160 | </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 161 | src="./img/sm_image015.gif"></span> = <span style='font-family: |
---|
[6e8b436] | 162 | "Times New Roman","serif"'>constant:</span></p> |
---|
| 163 | |
---|
| 164 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 165 | style='font-family:"Times New Roman","serif"'>This case, the best way is to |
---|
| 166 | perform the integration, Eq. (1), numerically for both slit height and width. |
---|
| 167 | However, the numerical integration is not correct enough unless given a large |
---|
| 168 | number of iteration, say at least 10000 by 10000 for each element of the matrix |
---|
| 169 | W, which will take minutes and minutes to finish the calculation for a set of |
---|
| 170 | typical SANS data. An alternative way which is correct for slit width << |
---|
[17574ae] | 171 | slit hight, is used in the SANSView: This method is a mixed method that |
---|
[6e8b436] | 172 | combines the method 1) with the numerical integration for the slit width.</span></p> |
---|
| 173 | |
---|
| 174 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
| 175 | </p> |
---|
| 176 | |
---|
| 177 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'> |
---|
[17574ae] | 178 | <img src="./img/sm_image020.gif"> <span style='font-family: |
---|
[6e8b436] | 179 | "Times New Roman","serif"'>(7)</span></p> |
---|
| 180 | |
---|
| 181 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
[17574ae] | 182 | style='font-family:"Times New Roman","serif"'>for q<sub>p</sub> = q<sub>i</sub> |
---|
[6e8b436] | 183 | - </span><span style='position:relative;top:6.0pt'><img width=28 height=24 |
---|
[17574ae] | 184 | src="./img/sm_image012.gif"></span><span style='font-family: |
---|
| 185 | "Times New Roman","serif"'> and</span> <span style='font-family:"Times New Roman","serif"'>q<sub>N</sub> |
---|
[6e8b436] | 186 | = q<sub>i</sub> + </span><span style='position:relative;top:6.0pt'><img |
---|
[17574ae] | 187 | width=28 height=24 src="./img/sm_image012.gif"></span>. <span |
---|
[6e8b436] | 188 | style='position:relative;top:7.0pt'><img width=23 height=25 |
---|
[17574ae] | 189 | src="./img/sm_image018.gif"></span> <span style='font-family: |
---|
[6e8b436] | 190 | "Times New Roman","serif"'>= 0 for <i>I<sub>s</sub></i> in</span> <i><span |
---|
| 191 | style='font-family:"Times New Roman","serif"'>j < p</span></i><span |
---|
| 192 | style='font-family:"Times New Roman","serif"'> or<i> j>N-1</i>. </span></p> |
---|
| 193 | |
---|
| 194 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 195 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 196 | |
---|
| 197 | <p class=MsoListParagraphCxSpMiddle style='margin-left:.25in'><span |
---|
| 198 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 199 | |
---|
| 200 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 201 | 115%;font-family:"Times New Roman","serif"'><h5><a name="Pinhole Smear">Pinhole Smear</a></h5></span></p> |
---|
[6e8b436] | 202 | |
---|
| 203 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 204 | pinhole smearing computation is done similar to the Case 2) above except that |
---|
| 205 | the weight function used was the Gaussian function, so that the Eq. 6) for this |
---|
| 206 | case becomes</span></p> |
---|
| 207 | |
---|
[17574ae] | 208 | <p class=MsoNormal><img src="./img/sm_image021.gif"><span |
---|
| 209 | style='font-family:"Times New Roman","serif"'> (8)</span></p> |
---|
[6e8b436] | 210 | |
---|
| 211 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>For all |
---|
| 212 | the cases above, the weighting matrix <i>W</i> is calculated when the smearing |
---|
| 213 | is called at the first time, and it includes the ~ 60 q values (finely binned |
---|
| 214 | evenly) below (>0) and above the q range of data in order to cover all data |
---|
| 215 | points of the smearing computation for a given model and for a given slit size. |
---|
[17574ae] | 216 | The <i>Norm</i> factor is found numerically with the weighting matrix, and |
---|
[6e8b436] | 217 | considered on <i>I<sub>s</sub></i> computation.</span></p> |
---|
| 218 | |
---|
| 219 | <p class=MsoListParagraphCxSpFirst style='margin-left:.25in'><span |
---|
| 220 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 221 | |
---|
| 222 | <p class=MsoListParagraphCxSpLast><span style='font-size:14.0pt;line-height: |
---|
[5cc39f10] | 223 | 115%;font-family:"Times New Roman","serif"'><h5><a name="2D Smear">2D Smear</a></h5></span></p> |
---|
[6e8b436] | 224 | |
---|
| 225 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>The |
---|
| 226 | 2D smearing computation is done similar to the 1D pinhole smearing above |
---|
| 227 | except that the weight function used was the 2D elliptical Gaussian function</span></p> |
---|
| 228 | |
---|
[17574ae] | 229 | <p class=MsoNormal><img src="./img/sm_image022.gif"><span |
---|
| 230 | style='font-family:"Times New Roman","serif"'> (9)</span></p> |
---|
[6e8b436] | 231 | |
---|
| 232 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>In Eq |
---|
[8956bdb] | 233 | (9), x<sub>0</sub> = qcos</span><span style='font-family:Symbol'>(theta)</span><span |
---|
[6e8b436] | 234 | style='font-family:"Times New Roman","serif"'> and y<sub>0</sub>=qsin</span><span |
---|
[8956bdb] | 235 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 236 | , and the primed axes are in the coordinate rotated by an angle </span><span |
---|
[8956bdb] | 237 | style='font-family:Symbol'>theta</span><span style='font-family:"Times New Roman","serif"'> |
---|
[17574ae] | 238 | around z-axis (below) so that x<sub>0</sub> = x<sub>0</sub>cos</span><span |
---|
[8956bdb] | 239 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
[17574ae] | 240 | sin</span><span style='font-family:Symbol'>(theta) </span><span style='font-family: |
---|
| 241 | "Times New Roman","serif"'>and y<sub>0</sub> = -x<sub>0</sub>sin</span><span |
---|
[8956bdb] | 242 | style='font-family:Symbol'>(theta) + </span><span style='font-family:"Times New Roman","serif"'>y<sub>0</sub> |
---|
| 243 | cos</span><span style='font-family:Symbol'>(theta) .</span><span style='font-family: |
---|
[6e8b436] | 244 | "Times New Roman","serif"'> Note that the rotation angle is zero for x-y |
---|
| 245 | symmetric elliptical Gaussian distribution</span><span style='font-family:Symbol'>. |
---|
[17574ae] | 246 | </span><span style='font-family:"Times New Roman","serif"'>The A is a |
---|
[6e8b436] | 247 | normalization factor.</span></p> |
---|
| 248 | |
---|
| 249 | <p class=MsoNormal align=center style='text-align:center'><span |
---|
| 250 | style='font-family:"Times New Roman","serif"'><img width=439 height=376 |
---|
[17574ae] | 251 | id="Object 1" src="./img/sm_image023.gif"></span></p> |
---|
[6e8b436] | 252 | |
---|
| 253 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 254 | |
---|
| 255 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Now we |
---|
| 256 | consider a numerical integration where each bins in </span><span |
---|
[8956bdb] | 257 | style='font-family:Symbol'>THETA</span><span style='font-family:"Times New Roman","serif"'> |
---|
[6e8b436] | 258 | and R are <b>evenly </b>(this is to simplify the equation below) distributed by |
---|
[8956bdb] | 259 | </span><span style='font-family:Symbol'>Delta_THETA </span><span style='font-family: |
---|
| 260 | "Times New Roman","serif"'>and </span><span style='font-family:Symbol'>Delta</span><span |
---|
[6e8b436] | 261 | style='font-family:"Times New Roman","serif"'>R, respectively, and it is |
---|
| 262 | assumed that I(x, y) is constant within the bins which in turn becomes</span></p> |
---|
| 263 | |
---|
[17574ae] | 264 | <p class=MsoNormal><img src="./img/sm_image024.gif"></p> |
---|
[6e8b436] | 265 | |
---|
[17574ae] | 266 | <p class=MsoNormal> <span |
---|
[6e8b436] | 267 | style='font-family:"Times New Roman","serif"'>(10)</span></p> |
---|
| 268 | |
---|
| 269 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Since we |
---|
| 270 | have found the weighting factor on each bin points, it is convenient to |
---|
| 271 | transform x-y back to x-y coordinate (rotating it by -</span><span |
---|
[8956bdb] | 272 | style='font-family:Symbol'>(theta)</span><span style='font-family:"Times New Roman","serif"'> |
---|
[17574ae] | 273 | around z axis). Then, for the polar symmetric smear,</span></p> |
---|
[6e8b436] | 274 | |
---|
[17574ae] | 275 | <p class=MsoNormal><img src="./img/sm_image025.gif"><span |
---|
| 276 | style='position:relative;top:35.0pt'> </span>(11)</p> |
---|
[6e8b436] | 277 | |
---|
| 278 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 279 | |
---|
[17574ae] | 280 | <p class=MsoNormal><img src="./img/sm_image026.gif"></p> |
---|
[6e8b436] | 281 | |
---|
| 282 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>while |
---|
| 283 | for the x-y symmetric smear,</span></p> |
---|
| 284 | |
---|
[17574ae] | 285 | <p class=MsoNormal><img src="./img/sm_image027.gif"><span |
---|
| 286 | style='font-family:"Times New Roman","serif"'> (12)</span></p> |
---|
[6e8b436] | 287 | |
---|
| 288 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>where,</span></p> |
---|
| 289 | |
---|
[17574ae] | 290 | <p class=MsoNormal><img src="./img/sm_image028.gif"></p> |
---|
[6e8b436] | 291 | |
---|
| 292 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Here, the |
---|
| 293 | current version of the SANSVIEW uses the Eq. (11) for 2D smearing assuming that |
---|
| 294 | all the Gaussian weighting functions are aligned in the polar coordinate. </span></p> |
---|
[50764a4] | 295 | <p> In the control panel, the higher accuracy indicates more and finer binnng points |
---|
| 296 | so that it costs more in time. </p> |
---|
| 297 | |
---|
[6e8b436] | 298 | |
---|
| 299 | </div> |
---|
| 300 | |
---|
| 301 | </body> |
---|
| 302 | |
---|
| 303 | </html> |
---|