1 | <html> |
---|
2 | |
---|
3 | <head> |
---|
4 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
5 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
6 | |
---|
7 | </head> |
---|
8 | |
---|
9 | <body lang=EN-US> |
---|
10 | |
---|
11 | <div class=WordSection1> |
---|
12 | |
---|
13 | <p class=MsoNormal><h3><span style='font-family:"Times New Roman","serif"'>Polydisperisty |
---|
14 | and Angular Distributions</span></h3></p> |
---|
15 | |
---|
16 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Calculates |
---|
17 | the form factor for a polydisperse and/or angular population of particles with |
---|
18 | uniform scattering length density. The resultant form factor is normalized by |
---|
19 | the average particle volume such that P(q) = scale*<F*F>/Vol + bkg, where |
---|
20 | F is the scattering amplitude and the < > denote an average over the size |
---|
21 | distribution. Users should use PD (polydispersity: this definition is different from the typical definition in polymer science) |
---|
22 | for a size distribution and Sigma for an |
---|
23 | angular distribution (see below).</span></p> |
---|
24 | <p> Note that this computation is very time intensive thus applying polydispersion/angular distrubtion for |
---|
25 | more than one paramters or increasing Npts values might need extensive patience to complete the computation. Also |
---|
26 | note that even though it is time consuming, it is safer to have larger values of Npts and Nsigmas.</p> |
---|
27 | |
---|
28 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
29 | style='font-family:"Times New Roman","serif"'>The following five distribution |
---|
30 | functions are provided;</span></p> |
---|
31 | <p> </p> |
---|
32 | <ul> |
---|
33 | <li><a href="#Rectangular">Rectangular distribution</a></li> |
---|
34 | <li><a href="#Array">Array distribution</a></li> |
---|
35 | <li><a href="#Gaussian">Gaussian distribution</a></li> |
---|
36 | <li><a href="#Lognormal">Lognormal distribution</a></li> |
---|
37 | <li><a href="#Schulz">Schulz distribution</a></li> |
---|
38 | </ul> |
---|
39 | <p> </p> |
---|
40 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
41 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
42 | |
---|
43 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
44 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
45 | |
---|
46 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
47 | style='font-family:"Times New Roman","serif"'><a name="Rectangular"><h4>Rectangular distribution</a></h4></span></p> |
---|
48 | |
---|
49 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
50 | style='font-family:"Times New Roman","serif";position:relative;top:22.0pt'><img |
---|
51 | width=248 height=67 src="./img/pd_image001.png"></span></p> |
---|
52 | |
---|
53 | <p> </p> |
---|
54 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
55 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
56 | of the distribution, w is the half-width, and Norm is a normalization factor |
---|
57 | which is determined during the numerical calculation. Note that the Sigma and |
---|
58 | the half width <i>w</i> are different.</span></p> |
---|
59 | |
---|
60 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
61 | style='font-family:"Times New Roman","serif"'>The standard deviation is </span></p> |
---|
62 | |
---|
63 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
64 | style='font-family:"Times New Roman","serif";position:relative;top:4.0pt'><img |
---|
65 | width=72 height=24 src="./img/pd_image002.png"></span><span |
---|
66 | style='font-family:"Times New Roman","serif"'>. </span></p> |
---|
67 | |
---|
68 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
69 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
70 | |
---|
71 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
72 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
73 | |
---|
74 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
75 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
76 | width=93 height=24 src="./img/pd_image003.png"></span><span |
---|
77 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
78 | |
---|
79 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
80 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
81 | |
---|
82 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
83 | style='font-family:"Times New Roman","serif"'><img width=511 height=270 |
---|
84 | id="Picture 1" src="./img/pd_image004.jpg" alt=flat.gif></span></p> |
---|
85 | |
---|
86 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
87 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
88 | |
---|
89 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
90 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
91 | |
---|
92 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
93 | style='font-family:"Times New Roman","serif"'><a name="Array"><h4>Array distribution</h4></a></span></p> |
---|
94 | |
---|
95 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
96 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
97 | |
---|
98 | |
---|
99 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
100 | style='font-family:"Times New Roman","serif"'>This distribution is to be given |
---|
101 | by users as a txt file where the array should be defined by two columns in the |
---|
102 | order of x and f(x) values. The f(x) will be normalized by SansView during the |
---|
103 | computation.</span></p> |
---|
104 | |
---|
105 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
106 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
107 | |
---|
108 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
109 | style='font-family:"Times New Roman","serif"'>Example of an array in the file;</span></p> |
---|
110 | |
---|
111 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
112 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
113 | |
---|
114 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
115 | style='font-family:"Times New Roman","serif"'>30 0.1</span></p> |
---|
116 | |
---|
117 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
118 | style='font-family:"Times New Roman","serif"'>32 0.3</span></p> |
---|
119 | |
---|
120 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
121 | style='font-family:"Times New Roman","serif"'>35 0.4</span></p> |
---|
122 | |
---|
123 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
124 | style='font-family:"Times New Roman","serif"'>36 0.5</span></p> |
---|
125 | |
---|
126 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
127 | style='font-family:"Times New Roman","serif"'>37 0.6</span></p> |
---|
128 | |
---|
129 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
130 | style='font-family:"Times New Roman","serif"'>39 0.7</span></p> |
---|
131 | |
---|
132 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
133 | style='font-family:"Times New Roman","serif"'>41 0.9</span></p> |
---|
134 | |
---|
135 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
136 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
137 | |
---|
138 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
139 | style='font-family:"Times New Roman","serif"'>We use only these array values in |
---|
140 | the computation, therefore the mean value given in the control panel, for |
---|
141 | example radius = 60, will be ignored.</span></p> |
---|
142 | |
---|
143 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
144 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
145 | |
---|
146 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
147 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
148 | |
---|
149 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
150 | style='font-family:"Times New Roman","serif"'><a name="Gaussian"><h4>Gaussian distribution</h4></a></span></p> |
---|
151 | |
---|
152 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
153 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
154 | |
---|
155 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
156 | style='font-family:"Times New Roman","serif";position:relative;top:12.0pt'><img |
---|
157 | width=212 height=44 src="./img/pd_image005.png"></span></p> |
---|
158 | |
---|
159 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
160 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
161 | |
---|
162 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
163 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
164 | of the distribution and Norm is a normalization factor which is determined |
---|
165 | during the numerical calculation.</span></p> |
---|
166 | |
---|
167 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
168 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
169 | |
---|
170 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
171 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
172 | |
---|
173 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
174 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
175 | width=93 height=24 src="./img/pd_image003.png"></span><span |
---|
176 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
177 | |
---|
178 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
179 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
180 | |
---|
181 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
182 | style='font-family:"Times New Roman","serif"'><img width=518 height=275 |
---|
183 | id="Picture 2" src="./img/pd_image006.jpg" alt=gauss.gif></span></p> |
---|
184 | |
---|
185 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
186 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
187 | |
---|
188 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
189 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
190 | |
---|
191 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
192 | style='font-family:"Times New Roman","serif"'><a name="Lognormal"><h4>Lognormal distribution</h4></a></span></p> |
---|
193 | |
---|
194 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
195 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
196 | |
---|
197 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
198 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
199 | |
---|
200 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
201 | style='font-family:"Times New Roman","serif";position:relative;top:14.0pt'><img |
---|
202 | width=236 height=47 src="./img/pd_image007.png"></span></p> |
---|
203 | |
---|
204 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
205 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
206 | |
---|
207 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
208 | style='font-family:"Times New Roman","serif"'>The mu = ln(x<sub>med</sub>), x<sub>med</sub> |
---|
209 | is the median value of the distribution, and Norm is a normalization factor |
---|
210 | which will be determined during the numerical calculation. The median value is |
---|
211 | the value given in the size parameter in the control panel, for example, |
---|
212 | radius = 60.</span></p> |
---|
213 | |
---|
214 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
215 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
216 | |
---|
217 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
218 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is given |
---|
219 | by sigma,</span></p> |
---|
220 | |
---|
221 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
222 | style='font-family:"Times New Roman","serif";position:relative;top:5.0pt'><img |
---|
223 | width=55 height=21 src="./img/pd_image008.png"></span><span |
---|
224 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
225 | |
---|
226 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
227 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
228 | |
---|
229 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
230 | style='font-family:"Times New Roman","serif"'>For the angular distribution,</span></p> |
---|
231 | |
---|
232 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
233 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
234 | width=76 height=24 src="./img/pd_image009.png"></span></p> |
---|
235 | |
---|
236 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
237 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
238 | |
---|
239 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
240 | style='font-family:"Times New Roman","serif"'>The mean value is given by x<sub>mean</sub> |
---|
241 | =exp(mu+p^2/2).</span></p> |
---|
242 | |
---|
243 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
244 | style='font-family:"Times New Roman","serif"'>The peak value is given by x<sub>peak</sub>=exp(mu-p^2).</span></p> |
---|
245 | |
---|
246 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
247 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
248 | |
---|
249 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
250 | style='font-family:"Times New Roman","serif"'><img width=450 height=239 |
---|
251 | id="Picture 7" src="./img/pd_image010.jpg" alt=lognormal.gif></span></p> |
---|
252 | |
---|
253 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
254 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
255 | |
---|
256 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
257 | style='font-family:"Times New Roman","serif"'>This distribution function |
---|
258 | spreads more and the peak shifts to the left as the p increases, requiring |
---|
259 | higher values of Nsigmas and Npts.</span></p> |
---|
260 | |
---|
261 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
262 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
263 | |
---|
264 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
265 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
266 | |
---|
267 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
268 | style='font-family:"Times New Roman","serif"'><a name="Schulz"><h4>Schulz distribution</h4></a></span></p> |
---|
269 | |
---|
270 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
271 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
272 | |
---|
273 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
274 | style='font-family:"Times New Roman","serif";position:relative;top:15.0pt'><img |
---|
275 | width=347 height=45 src="./img/pd_image011.png"></span></p> |
---|
276 | |
---|
277 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
278 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
279 | |
---|
280 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
281 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
282 | of the distribution and Norm is a normalization factor which is determined |
---|
283 | during the numerical calculation. </span></p> |
---|
284 | |
---|
285 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
286 | style='font-family:"Times New Roman","serif"'>The z = 1/p^2 1.</span></p> |
---|
287 | |
---|
288 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
289 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
290 | |
---|
291 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
292 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
293 | |
---|
294 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
295 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
296 | width=80 height=24 src="./img/pd_image012.png"></span><span |
---|
297 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
298 | <p/> |
---|
299 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
300 | style='font-family:"Times New Roman","serif"'>Note that the higher PD (polydispersity) |
---|
301 | might need higher values of Npts and Nsigmas. For example, at PD = 0.7 and radisus = 60 A, |
---|
302 | Npts >= 160, and Nsigmas >= 15 at least.</span></p> |
---|
303 | <p/> |
---|
304 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
305 | style='font-family:"Times New Roman","serif"'><img width=438 height=232 |
---|
306 | id="Picture 4" src="./img/pd_image013.jpg" alt=schulz.gif></span></p> |
---|
307 | |
---|
308 | </div> |
---|
309 | |
---|
310 | </body> |
---|
311 | |
---|
312 | </html> |
---|