[50764a4] | 1 | <html> |
---|
| 2 | |
---|
| 3 | <head> |
---|
| 4 | <meta http-equiv=Content-Type content="text/html; charset=windows-1252"> |
---|
| 5 | <meta name=Generator content="Microsoft Word 12 (filtered)"> |
---|
| 6 | |
---|
| 7 | </head> |
---|
| 8 | |
---|
| 9 | <body lang=EN-US> |
---|
| 10 | |
---|
| 11 | <div class=WordSection1> |
---|
| 12 | |
---|
| 13 | <p class=MsoNormal><h3><span style='font-family:"Times New Roman","serif"'>Polydisperisty |
---|
| 14 | and Angular Distributions</span></h3></p> |
---|
| 15 | |
---|
| 16 | <p class=MsoNormal><span style='font-family:"Times New Roman","serif"'>Calculates |
---|
| 17 | the form factor for a polydisperse and/or angular population of particles with |
---|
| 18 | uniform scattering length density. The resultant form factor is normalized by |
---|
| 19 | the average particle volume such that P(q) = scale*<F*F>/Vol + bkg, where |
---|
| 20 | F is the scattering amplitude and the < > denote an average over the size |
---|
[b9958b3] | 21 | distribution. Users should use PD (polydispersity: this definition is different from the typical definition in polymer science) |
---|
| 22 | for a size distribution and Sigma for an |
---|
| 23 | angular distribution (see below).</span></p> |
---|
[50764a4] | 24 | <p> Note that this computation is very time intensive thus applying polydispersion/angular distrubtion for |
---|
[b9958b3] | 25 | more than one paramters or increasing Npts values might need extensive patience to complete the computation. Also |
---|
| 26 | note that even though it is time consuming, it is safer to have larger values of Npts and Nsigmas.</p> |
---|
[50764a4] | 27 | |
---|
| 28 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 29 | style='font-family:"Times New Roman","serif"'>The following five distribution |
---|
| 30 | functions are provided;</span></p> |
---|
| 31 | <p> </p> |
---|
| 32 | <ul> |
---|
| 33 | <li><a href="#Rectangular">Rectangular distribution</a></li> |
---|
| 34 | <li><a href="#Array">Array distribution</a></li> |
---|
| 35 | <li><a href="#Gaussian">Gaussian distribution</a></li> |
---|
| 36 | <li><a href="#Lognormal">Lognormal distribution</a></li> |
---|
| 37 | <li><a href="#Schulz">Schulz distribution</a></li> |
---|
| 38 | </ul> |
---|
| 39 | <p> </p> |
---|
| 40 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 41 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 42 | |
---|
| 43 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 44 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 45 | |
---|
| 46 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 47 | style='font-family:"Times New Roman","serif"'><a name="Rectangular"><h4>Rectangular distribution</a></h4></span></p> |
---|
| 48 | |
---|
| 49 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 50 | style='font-family:"Times New Roman","serif";position:relative;top:22.0pt'><img |
---|
[17574ae] | 51 | width=248 height=67 src="./img/pd_image001.png"></span></p> |
---|
[50764a4] | 52 | |
---|
| 53 | <p> </p> |
---|
| 54 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 55 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
| 56 | of the distribution, w is the half-width, and Norm is a normalization factor |
---|
| 57 | which is determined during the numerical calculation. Note that the Sigma and |
---|
| 58 | the half width <i>w</i> are different.</span></p> |
---|
| 59 | |
---|
| 60 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 61 | style='font-family:"Times New Roman","serif"'>The standard deviation is </span></p> |
---|
| 62 | |
---|
| 63 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 64 | style='font-family:"Times New Roman","serif";position:relative;top:4.0pt'><img |
---|
[17574ae] | 65 | width=72 height=24 src="./img/pd_image002.png"></span><span |
---|
[50764a4] | 66 | style='font-family:"Times New Roman","serif"'>. </span></p> |
---|
| 67 | |
---|
| 68 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 69 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 70 | |
---|
| 71 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 72 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
| 73 | |
---|
| 74 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 75 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
[17574ae] | 76 | width=93 height=24 src="./img/pd_image003.png"></span><span |
---|
[50764a4] | 77 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
| 78 | |
---|
| 79 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 80 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 81 | |
---|
| 82 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 83 | style='font-family:"Times New Roman","serif"'><img width=511 height=270 |
---|
[17574ae] | 84 | id="Picture 1" src="./img/pd_image004.jpg" alt=flat.gif></span></p> |
---|
[50764a4] | 85 | |
---|
| 86 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 87 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 88 | |
---|
| 89 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 90 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 91 | |
---|
| 92 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 93 | style='font-family:"Times New Roman","serif"'><a name="Array"><h4>Array distribution</h4></a></span></p> |
---|
| 94 | |
---|
| 95 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 96 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 97 | |
---|
| 98 | |
---|
| 99 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 100 | style='font-family:"Times New Roman","serif"'>This distribution is to be given |
---|
| 101 | by users as a txt file where the array should be defined by two columns in the |
---|
| 102 | order of x and f(x) values. The f(x) will be normalized by SansView during the |
---|
| 103 | computation.</span></p> |
---|
| 104 | |
---|
| 105 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 106 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 107 | |
---|
| 108 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 109 | style='font-family:"Times New Roman","serif"'>Example of an array in the file;</span></p> |
---|
| 110 | |
---|
| 111 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 112 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 113 | |
---|
| 114 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 115 | style='font-family:"Times New Roman","serif"'>30 0.1</span></p> |
---|
| 116 | |
---|
| 117 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 118 | style='font-family:"Times New Roman","serif"'>32 0.3</span></p> |
---|
| 119 | |
---|
| 120 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 121 | style='font-family:"Times New Roman","serif"'>35 0.4</span></p> |
---|
| 122 | |
---|
| 123 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 124 | style='font-family:"Times New Roman","serif"'>36 0.5</span></p> |
---|
| 125 | |
---|
| 126 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 127 | style='font-family:"Times New Roman","serif"'>37 0.6</span></p> |
---|
| 128 | |
---|
| 129 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 130 | style='font-family:"Times New Roman","serif"'>39 0.7</span></p> |
---|
| 131 | |
---|
| 132 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 133 | style='font-family:"Times New Roman","serif"'>41 0.9</span></p> |
---|
| 134 | |
---|
| 135 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 136 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 137 | |
---|
| 138 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 139 | style='font-family:"Times New Roman","serif"'>We use only these array values in |
---|
| 140 | the computation, therefore the mean value given in the control panel, for |
---|
| 141 | example radius = 60, will be ignored.</span></p> |
---|
| 142 | |
---|
| 143 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 144 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 145 | |
---|
| 146 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 147 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 148 | |
---|
| 149 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 150 | style='font-family:"Times New Roman","serif"'><a name="Gaussian"><h4>Gaussian distribution</h4></a></span></p> |
---|
| 151 | |
---|
| 152 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 153 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 154 | |
---|
| 155 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 156 | style='font-family:"Times New Roman","serif";position:relative;top:12.0pt'><img |
---|
[17574ae] | 157 | width=212 height=44 src="./img/pd_image005.png"></span></p> |
---|
[50764a4] | 158 | |
---|
| 159 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 160 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 161 | |
---|
| 162 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 163 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
| 164 | of the distribution and Norm is a normalization factor which is determined |
---|
| 165 | during the numerical calculation.</span></p> |
---|
| 166 | |
---|
| 167 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 168 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 169 | |
---|
| 170 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 171 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
| 172 | |
---|
| 173 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 174 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
[17574ae] | 175 | width=93 height=24 src="./img/pd_image003.png"></span><span |
---|
[50764a4] | 176 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
| 177 | |
---|
| 178 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 179 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 180 | |
---|
| 181 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 182 | style='font-family:"Times New Roman","serif"'><img width=518 height=275 |
---|
[17574ae] | 183 | id="Picture 2" src="./img/pd_image006.jpg" alt=gauss.gif></span></p> |
---|
[50764a4] | 184 | |
---|
| 185 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 186 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 187 | |
---|
| 188 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 189 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 190 | |
---|
| 191 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 192 | style='font-family:"Times New Roman","serif"'><a name="Lognormal"><h4>Lognormal distribution</h4></a></span></p> |
---|
| 193 | |
---|
| 194 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 195 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 196 | |
---|
| 197 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 198 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 199 | |
---|
| 200 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 201 | style='font-family:"Times New Roman","serif";position:relative;top:14.0pt'><img |
---|
[17574ae] | 202 | width=236 height=47 src="./img/pd_image007.png"></span></p> |
---|
[50764a4] | 203 | |
---|
| 204 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 205 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 206 | |
---|
| 207 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 208 | style='font-family:"Times New Roman","serif"'>The mu = ln(x<sub>med</sub>), x<sub>med</sub> |
---|
| 209 | is the median value of the distribution, and Norm is a normalization factor |
---|
| 210 | which will be determined during the numerical calculation. The median value is |
---|
| 211 | the value given in the size parameter in the control panel, for example, |
---|
| 212 | radius = 60.</span></p> |
---|
| 213 | |
---|
| 214 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 215 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 216 | |
---|
| 217 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 218 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is given |
---|
| 219 | by sigma,</span></p> |
---|
| 220 | |
---|
| 221 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 222 | style='font-family:"Times New Roman","serif";position:relative;top:5.0pt'><img |
---|
[17574ae] | 223 | width=55 height=21 src="./img/pd_image008.png"></span><span |
---|
[50764a4] | 224 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
| 225 | |
---|
| 226 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 227 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 228 | |
---|
| 229 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 230 | style='font-family:"Times New Roman","serif"'>For the angular distribution,</span></p> |
---|
| 231 | |
---|
| 232 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 233 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
[17574ae] | 234 | width=76 height=24 src="./img/pd_image009.png"></span></p> |
---|
[50764a4] | 235 | |
---|
| 236 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 237 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 238 | |
---|
| 239 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 240 | style='font-family:"Times New Roman","serif"'>The mean value is given by x<sub>mean</sub> |
---|
| 241 | =exp(mu+p^2/2).</span></p> |
---|
| 242 | |
---|
| 243 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 244 | style='font-family:"Times New Roman","serif"'>The peak value is given by x<sub>peak</sub>=exp(mu-p^2).</span></p> |
---|
| 245 | |
---|
| 246 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 247 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 248 | |
---|
| 249 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 250 | style='font-family:"Times New Roman","serif"'><img width=450 height=239 |
---|
[17574ae] | 251 | id="Picture 7" src="./img/pd_image010.jpg" alt=lognormal.gif></span></p> |
---|
[50764a4] | 252 | |
---|
| 253 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 254 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 255 | |
---|
| 256 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 257 | style='font-family:"Times New Roman","serif"'>This distribution function |
---|
| 258 | spreads more and the peak shifts to the left as the p increases, requiring |
---|
| 259 | higher values of Nsigmas and Npts.</span></p> |
---|
| 260 | |
---|
| 261 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 262 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 263 | |
---|
| 264 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 265 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 266 | |
---|
| 267 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 268 | style='font-family:"Times New Roman","serif"'><a name="Schulz"><h4>Schulz distribution</h4></a></span></p> |
---|
| 269 | |
---|
| 270 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 271 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 272 | |
---|
| 273 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 274 | style='font-family:"Times New Roman","serif";position:relative;top:15.0pt'><img |
---|
[17574ae] | 275 | width=347 height=45 src="./img/pd_image011.png"></span></p> |
---|
[50764a4] | 276 | |
---|
| 277 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 278 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 279 | |
---|
| 280 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 281 | style='font-family:"Times New Roman","serif"'>The x<sub>mean</sub> is the mean |
---|
| 282 | of the distribution and Norm is a normalization factor which is determined |
---|
| 283 | during the numerical calculation. </span></p> |
---|
| 284 | |
---|
| 285 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 286 | style='font-family:"Times New Roman","serif"'>The z = 1/p^2 1.</span></p> |
---|
| 287 | |
---|
| 288 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 289 | style='font-family:"Times New Roman","serif"'> </span></p> |
---|
| 290 | |
---|
| 291 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 292 | style='font-family:"Times New Roman","serif"'>The PD (polydispersity) is </span></p> |
---|
| 293 | |
---|
| 294 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 295 | style='font-family:"Times New Roman","serif";position:relative;top:6.0pt'><img |
---|
[17574ae] | 296 | width=80 height=24 src="./img/pd_image012.png"></span><span |
---|
[50764a4] | 297 | style='font-family:"Times New Roman","serif"'>.</span></p> |
---|
[b9958b3] | 298 | <p/> |
---|
| 299 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 300 | style='font-family:"Times New Roman","serif"'>Note that the higher PD (polydispersity) |
---|
| 301 | might need higher values of Npts and Nsigmas. For example, at PD = 0.7 and radisus = 60 A, |
---|
| 302 | Npts >= 160, and Nsigmas >= 15 at least.</span></p> |
---|
| 303 | <p/> |
---|
[50764a4] | 304 | <p class=MsoNormal style='margin-bottom:0in;margin-bottom:.0001pt'><span |
---|
| 305 | style='font-family:"Times New Roman","serif"'><img width=438 height=232 |
---|
[17574ae] | 306 | id="Picture 4" src="./img/pd_image013.jpg" alt=schulz.gif></span></p> |
---|
[50764a4] | 307 | |
---|
| 308 | </div> |
---|
| 309 | |
---|
| 310 | </body> |
---|
| 311 | |
---|
| 312 | </html> |
---|