1 | /* TwoPhaseFit.c |
---|
2 | |
---|
3 | */ |
---|
4 | |
---|
5 | #include "StandardHeaders.h" // Include ANSI headers, Mac headers |
---|
6 | #include "libTwoPhase.h" |
---|
7 | |
---|
8 | // scattering from the Teubner-Strey model for microemulsions - hardly needs to be an XOP... |
---|
9 | double |
---|
10 | TeubnerStreyModel(double dp[], double q) |
---|
11 | { |
---|
12 | double inten,q2,q4; //my local names |
---|
13 | |
---|
14 | q2 = q*q; |
---|
15 | q4 = q2*q2; |
---|
16 | |
---|
17 | inten = 1.0/(dp[0]+dp[1]*q2+dp[2]*q4); |
---|
18 | inten += dp[3]; |
---|
19 | return(inten); |
---|
20 | } |
---|
21 | |
---|
22 | double |
---|
23 | Power_Law_Model(double dp[], double q) |
---|
24 | { |
---|
25 | double qval; |
---|
26 | double inten,A,m,bgd; //my local names |
---|
27 | |
---|
28 | qval= q; |
---|
29 | |
---|
30 | A = dp[0]; |
---|
31 | m = dp[1]; |
---|
32 | bgd = dp[2]; |
---|
33 | inten = A*pow(qval,-m) + bgd; |
---|
34 | return(inten); |
---|
35 | } |
---|
36 | |
---|
37 | |
---|
38 | double |
---|
39 | Peak_Lorentz_Model(double dp[], double q) |
---|
40 | { |
---|
41 | double qval; |
---|
42 | double inten,I0, qpk, dq,bgd; //my local names |
---|
43 | qval= q; |
---|
44 | |
---|
45 | I0 = dp[0]; |
---|
46 | qpk = dp[1]; |
---|
47 | dq = dp[2]; |
---|
48 | bgd = dp[3]; |
---|
49 | inten = I0/(1.0 + pow( (qval-qpk)/dq,2) ) + bgd; |
---|
50 | |
---|
51 | return(inten); |
---|
52 | } |
---|
53 | |
---|
54 | double |
---|
55 | Peak_Gauss_Model(double dp[], double q) |
---|
56 | { |
---|
57 | double qval; |
---|
58 | double inten,I0, qpk, dq,bgd; //my local names |
---|
59 | |
---|
60 | qval= q; |
---|
61 | |
---|
62 | I0 = dp[0]; |
---|
63 | qpk = dp[1]; |
---|
64 | dq = dp[2]; |
---|
65 | bgd = dp[3]; |
---|
66 | inten = I0*exp(-0.5*pow((qval-qpk)/dq,2))+ bgd; |
---|
67 | |
---|
68 | return(inten); |
---|
69 | } |
---|
70 | |
---|
71 | double |
---|
72 | Lorentz_Model(double dp[], double q) |
---|
73 | { |
---|
74 | double qval; |
---|
75 | double inten,I0, L,bgd; //my local names |
---|
76 | |
---|
77 | qval= q; |
---|
78 | |
---|
79 | I0 = dp[0]; |
---|
80 | L = dp[1]; |
---|
81 | bgd = dp[2]; |
---|
82 | inten = I0/(1.0 + (qval*L)*(qval*L)) + bgd; |
---|
83 | |
---|
84 | return(inten); |
---|
85 | } |
---|
86 | |
---|
87 | double |
---|
88 | Fractal(double dp[], double q) |
---|
89 | { |
---|
90 | double x,pi; |
---|
91 | double r0,Df,corr,phi,sldp,sldm,bkg; |
---|
92 | double pq,sq,ans; |
---|
93 | |
---|
94 | pi = 4.0*atan(1.0); |
---|
95 | x=q; |
---|
96 | |
---|
97 | phi = dp[0]; // volume fraction of building block spheres... |
---|
98 | r0 = dp[1]; // radius of building block |
---|
99 | Df = dp[2]; // fractal dimension |
---|
100 | corr = dp[3]; // correlation length of fractal-like aggregates |
---|
101 | sldp = dp[4]; // SLD of building block |
---|
102 | sldm = dp[5]; // SLD of matrix or solution |
---|
103 | bkg = dp[6]; // flat background |
---|
104 | |
---|
105 | //calculate P(q) for the spherical subunits, units cm-1 sr-1 |
---|
106 | pq = 1.0e8*phi*4.0/3.0*pi*r0*r0*r0*(sldp-sldm)*(sldp-sldm)*pow((3*(sin(x*r0) - x*r0*cos(x*r0))/pow((x*r0),3)),2); |
---|
107 | |
---|
108 | //calculate S(q) |
---|
109 | sq = Df*exp(gammln(Df-1.0))*sin((Df-1.0)*atan(x*corr)); |
---|
110 | sq /= pow((x*r0),Df) * pow((1.0 + 1.0/(x*corr)/(x*corr)),((Df-1.0)/2.0)); |
---|
111 | sq += 1.0; |
---|
112 | //combine and return |
---|
113 | ans = pq*sq + bkg; |
---|
114 | |
---|
115 | return(ans); |
---|
116 | } |
---|
117 | |
---|
118 | // 6 JUL 2009 SRK changed definition of Izero scale factor to be uncorrelated with range |
---|
119 | // |
---|
120 | double |
---|
121 | DAB_Model(double dp[], double q) |
---|
122 | { |
---|
123 | double qval,inten; |
---|
124 | double Izero, range, incoh; |
---|
125 | |
---|
126 | qval= q; |
---|
127 | Izero = dp[0]; |
---|
128 | range = dp[1]; |
---|
129 | incoh = dp[2]; |
---|
130 | |
---|
131 | inten = (Izero*range*range*range)/pow((1.0 + (qval*range)*(qval*range)),2) + incoh; |
---|
132 | |
---|
133 | return(inten); |
---|
134 | } |
---|
135 | |
---|
136 | // G. Beaucage's Unified Model (1-4 levels) |
---|
137 | // |
---|
138 | double |
---|
139 | OneLevel(double dp[], double q) |
---|
140 | { |
---|
141 | double x,ans,erf1; |
---|
142 | double G1,Rg1,B1,Pow1,bkg,scale; |
---|
143 | |
---|
144 | x=q; |
---|
145 | scale = dp[0]; |
---|
146 | G1 = dp[1]; |
---|
147 | Rg1 = dp[2]; |
---|
148 | B1 = dp[3]; |
---|
149 | Pow1 = dp[4]; |
---|
150 | bkg = dp[5]; |
---|
151 | |
---|
152 | erf1 = erf( (x*Rg1/sqrt(6.0))); |
---|
153 | |
---|
154 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
155 | ans += B1*pow((erf1*erf1*erf1/x),Pow1); |
---|
156 | |
---|
157 | if(x == 0) { |
---|
158 | ans = G1; |
---|
159 | } |
---|
160 | |
---|
161 | ans *= scale; |
---|
162 | ans += bkg; |
---|
163 | return(ans); |
---|
164 | } |
---|
165 | |
---|
166 | // G. Beaucage's Unified Model (1-4 levels) |
---|
167 | // |
---|
168 | double |
---|
169 | TwoLevel(double dp[], double q) |
---|
170 | { |
---|
171 | double x; |
---|
172 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
173 | double erf1,erf2,scale; |
---|
174 | |
---|
175 | x=q; |
---|
176 | |
---|
177 | scale = dp[0]; |
---|
178 | G1 = dp[1]; //equivalent to I(0) |
---|
179 | Rg1 = dp[2]; |
---|
180 | B1 = dp[3]; |
---|
181 | Pow1 = dp[4]; |
---|
182 | G2 = dp[5]; |
---|
183 | Rg2 = dp[6]; |
---|
184 | B2 = dp[7]; |
---|
185 | Pow2 = dp[8]; |
---|
186 | bkg = dp[9]; |
---|
187 | |
---|
188 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
189 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
190 | //Print erf1 |
---|
191 | |
---|
192 | ans = G1*exp(-x*x*Rg1*Rg1/3.0); |
---|
193 | ans += B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
194 | ans += G2*exp(-x*x*Rg2*Rg2/3.0); |
---|
195 | ans += B2*pow((erf2*erf2*erf2/x),Pow2); |
---|
196 | |
---|
197 | if(x == 0) { |
---|
198 | ans = G1+G2; |
---|
199 | } |
---|
200 | |
---|
201 | ans *= scale; |
---|
202 | ans += bkg; |
---|
203 | |
---|
204 | return(ans); |
---|
205 | } |
---|
206 | |
---|
207 | // G. Beaucage's Unified Model (1-4 levels) |
---|
208 | // |
---|
209 | double |
---|
210 | ThreeLevel(double dp[], double q) |
---|
211 | { |
---|
212 | double x; |
---|
213 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
214 | double G3,Rg3,B3,Pow3,erf3; |
---|
215 | double erf1,erf2,scale; |
---|
216 | |
---|
217 | x=q; |
---|
218 | |
---|
219 | scale = dp[0]; |
---|
220 | G1 = dp[1]; //equivalent to I(0) |
---|
221 | Rg1 = dp[2]; |
---|
222 | B1 = dp[3]; |
---|
223 | Pow1 = dp[4]; |
---|
224 | G2 = dp[5]; |
---|
225 | Rg2 = dp[6]; |
---|
226 | B2 = dp[7]; |
---|
227 | Pow2 = dp[8]; |
---|
228 | G3 = dp[9]; |
---|
229 | Rg3 = dp[10]; |
---|
230 | B3 = dp[11]; |
---|
231 | Pow3 = dp[12]; |
---|
232 | bkg = dp[13]; |
---|
233 | |
---|
234 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
235 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
236 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
237 | //Print erf1 |
---|
238 | |
---|
239 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
240 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
241 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*pow((erf3*erf3*erf3/x),Pow3); |
---|
242 | |
---|
243 | if(x == 0) { |
---|
244 | ans = G1+G2+G3; |
---|
245 | } |
---|
246 | |
---|
247 | ans *= scale; |
---|
248 | ans += bkg; |
---|
249 | |
---|
250 | return(ans); |
---|
251 | } |
---|
252 | |
---|
253 | // G. Beaucage's Unified Model (1-4 levels) |
---|
254 | // |
---|
255 | double |
---|
256 | FourLevel(double dp[], double q) |
---|
257 | { |
---|
258 | double x; |
---|
259 | double ans,G1,Rg1,B1,G2,Rg2,B2,Pow1,Pow2,bkg; |
---|
260 | double G3,Rg3,B3,Pow3,erf3; |
---|
261 | double G4,Rg4,B4,Pow4,erf4; |
---|
262 | double erf1,erf2,scale; |
---|
263 | |
---|
264 | x=q; |
---|
265 | |
---|
266 | scale = dp[0]; |
---|
267 | G1 = dp[1]; //equivalent to I(0) |
---|
268 | Rg1 = dp[2]; |
---|
269 | B1 = dp[3]; |
---|
270 | Pow1 = dp[4]; |
---|
271 | G2 = dp[5]; |
---|
272 | Rg2 = dp[6]; |
---|
273 | B2 = dp[7]; |
---|
274 | Pow2 = dp[8]; |
---|
275 | G3 = dp[9]; |
---|
276 | Rg3 = dp[10]; |
---|
277 | B3 = dp[11]; |
---|
278 | Pow3 = dp[12]; |
---|
279 | G4 = dp[13]; |
---|
280 | Rg4 = dp[14]; |
---|
281 | B4 = dp[15]; |
---|
282 | Pow4 = dp[16]; |
---|
283 | bkg = dp[17]; |
---|
284 | |
---|
285 | erf1 = erf( (x*Rg1/sqrt(6.0)) ); |
---|
286 | erf2 = erf( (x*Rg2/sqrt(6.0)) ); |
---|
287 | erf3 = erf( (x*Rg3/sqrt(6.0)) ); |
---|
288 | erf4 = erf( (x*Rg4/sqrt(6.0)) ); |
---|
289 | |
---|
290 | ans = G1*exp(-x*x*Rg1*Rg1/3.0) + B1*exp(-x*x*Rg2*Rg2/3.0)*pow((erf1*erf1*erf1/x),Pow1); |
---|
291 | ans += G2*exp(-x*x*Rg2*Rg2/3.0) + B2*exp(-x*x*Rg3*Rg3/3.0)*pow((erf2*erf2*erf2/x),Pow2); |
---|
292 | ans += G3*exp(-x*x*Rg3*Rg3/3.0) + B3*exp(-x*x*Rg4*Rg4/3.0)*pow((erf3*erf3*erf3/x),Pow3); |
---|
293 | ans += G4*exp(-x*x*Rg4*Rg4/3.0) + B4*pow((erf4*erf4*erf4/x),Pow4); |
---|
294 | |
---|
295 | if(x == 0) { |
---|
296 | ans = G1+G2+G3+G4; |
---|
297 | } |
---|
298 | |
---|
299 | ans *= scale; |
---|
300 | ans += bkg; |
---|
301 | |
---|
302 | return(ans); |
---|
303 | } |
---|
304 | |
---|
305 | double |
---|
306 | BroadPeak(double dp[], double q) |
---|
307 | { |
---|
308 | // variables are: |
---|
309 | //[0] Porod term scaling |
---|
310 | //[1] Porod exponent |
---|
311 | //[2] Lorentzian term scaling |
---|
312 | //[3] Lorentzian screening length [A] |
---|
313 | //[4] peak location [1/A] |
---|
314 | //[5] Lorentzian exponent |
---|
315 | //[6] background |
---|
316 | |
---|
317 | double aa,nn,cc,LL,Qzero,mm,bgd,inten,qval; |
---|
318 | qval= q; |
---|
319 | aa = dp[0]; |
---|
320 | nn = dp[1]; |
---|
321 | cc = dp[2]; |
---|
322 | LL = dp[3]; |
---|
323 | Qzero = dp[4]; |
---|
324 | mm = dp[5]; |
---|
325 | bgd = dp[6]; |
---|
326 | |
---|
327 | inten = aa/pow(qval,nn); |
---|
328 | inten += cc/(1.0 + pow((fabs(qval-Qzero)*LL),mm) ); |
---|
329 | inten += bgd; |
---|
330 | |
---|
331 | return(inten); |
---|
332 | } |
---|
333 | |
---|
334 | double |
---|
335 | CorrLength(double dp[], double q) |
---|
336 | { |
---|
337 | // variables are: |
---|
338 | //[0] Porod term scaling |
---|
339 | //[1] Porod exponent |
---|
340 | //[2] Lorentzian term scaling |
---|
341 | //[3] Lorentzian screening length [A] |
---|
342 | //[4] Lorentzian exponent |
---|
343 | //[5] background |
---|
344 | |
---|
345 | double aa,nn,cc,LL,mm,bgd,inten,qval; |
---|
346 | qval= q; |
---|
347 | aa = dp[0]; |
---|
348 | nn = dp[1]; |
---|
349 | cc = dp[2]; |
---|
350 | LL = dp[3]; |
---|
351 | mm = dp[4]; |
---|
352 | bgd = dp[5]; |
---|
353 | |
---|
354 | inten = aa/pow(qval,nn); |
---|
355 | inten += cc/(1.0 + pow((qval*LL),mm) ); |
---|
356 | inten += bgd; |
---|
357 | |
---|
358 | return(inten); |
---|
359 | } |
---|
360 | |
---|
361 | double |
---|
362 | TwoLorentzian(double dp[], double q) |
---|
363 | { |
---|
364 | // variables are: |
---|
365 | //[0] Lorentzian term scaling |
---|
366 | //[1] Lorentzian screening length [A] |
---|
367 | //[2] Lorentzian exponent |
---|
368 | //[3] Lorentzian #2 term scaling |
---|
369 | //[4] Lorentzian #2 screening length [A] |
---|
370 | //[5] Lorentzian #2 exponent |
---|
371 | //[6] background |
---|
372 | |
---|
373 | double aa,LL1,nn,cc,LL2,mm,bgd,inten,qval; |
---|
374 | qval= q; |
---|
375 | aa = dp[0]; |
---|
376 | LL1 = dp[1]; |
---|
377 | nn = dp[2]; |
---|
378 | cc = dp[3]; |
---|
379 | LL2 = dp[4]; |
---|
380 | mm = dp[5]; |
---|
381 | bgd= dp[6]; |
---|
382 | |
---|
383 | inten = aa/(1.0 + pow((qval*LL1),nn) ); |
---|
384 | inten += cc/(1.0 + pow((qval*LL2),mm) ); |
---|
385 | inten += bgd; |
---|
386 | |
---|
387 | return(inten); |
---|
388 | } |
---|
389 | |
---|
390 | double |
---|
391 | TwoPowerLaw(double dp[], double q) |
---|
392 | { |
---|
393 | //[0] Coefficient |
---|
394 | //[1] (-) Power @ low Q |
---|
395 | //[2] (-) Power @ high Q |
---|
396 | //[3] crossover Q-value |
---|
397 | //[4] incoherent background |
---|
398 | |
---|
399 | double A, m1,m2,qc,bgd,scale,inten,qval; |
---|
400 | qval= q; |
---|
401 | A = dp[0]; |
---|
402 | m1 = dp[1]; |
---|
403 | m2 = dp[2]; |
---|
404 | qc = dp[3]; |
---|
405 | bgd = dp[4]; |
---|
406 | |
---|
407 | if(qval<=qc){ |
---|
408 | inten = A*pow(qval,-1.0*m1); |
---|
409 | } else { |
---|
410 | scale = A*pow(qc,-1.0*m1) / pow(qc,-1.0*m2); |
---|
411 | inten = scale*pow(qval,-1.0*m2); |
---|
412 | } |
---|
413 | |
---|
414 | inten += bgd; |
---|
415 | |
---|
416 | return(inten); |
---|
417 | } |
---|
418 | |
---|
419 | double |
---|
420 | PolyGaussCoil(double dp[], double x) |
---|
421 | { |
---|
422 | //w[0] = scale |
---|
423 | //w[1] = radius of gyration [ᅵ] |
---|
424 | //w[2] = polydispersity, ratio of Mw/Mn |
---|
425 | //w[3] = bkg [cm-1] |
---|
426 | |
---|
427 | double scale,bkg,Rg,uval,Mw_Mn,inten,xi; |
---|
428 | |
---|
429 | scale = dp[0]; |
---|
430 | Rg = dp[1]; |
---|
431 | Mw_Mn = dp[2]; |
---|
432 | bkg = dp[3]; |
---|
433 | |
---|
434 | uval = Mw_Mn - 1.0; |
---|
435 | if(uval == 0.0) { |
---|
436 | uval = 1e-6; //avoid divide by zero error |
---|
437 | } |
---|
438 | |
---|
439 | xi = Rg*Rg*x*x/(1.0+2.0*uval); |
---|
440 | |
---|
441 | if(xi < 1e-3) { |
---|
442 | return(scale+bkg); //limiting value |
---|
443 | } |
---|
444 | |
---|
445 | inten = 2.0*(pow((1.0+uval*xi),(-1.0/uval))+xi-1.0); |
---|
446 | inten /= (1.0+uval)*xi*xi; |
---|
447 | |
---|
448 | inten *= scale; |
---|
449 | //add in the background |
---|
450 | inten += bkg; |
---|
451 | return(inten); |
---|
452 | } |
---|
453 | |
---|
454 | double |
---|
455 | GaussLorentzGel(double dp[], double x) |
---|
456 | { |
---|
457 | //[0] Gaussian scale factor |
---|
458 | //[1] Gaussian (static) screening length |
---|
459 | //[2] Lorentzian (fluctuation) scale factor |
---|
460 | //[3] Lorentzian screening length |
---|
461 | //[4] incoherent background |
---|
462 | |
---|
463 | double Ig0,gg,Il0,ll,bgd,inten; |
---|
464 | |
---|
465 | Ig0 = dp[0]; |
---|
466 | gg = dp[1]; |
---|
467 | Il0 = dp[2]; |
---|
468 | ll = dp[3]; |
---|
469 | bgd = dp[4]; |
---|
470 | |
---|
471 | inten = Ig0*exp(-1.0*x*x*gg*gg/2.0) + Il0/(1.0 + (x*ll)*(x*ll)) + bgd; |
---|
472 | |
---|
473 | return(inten); |
---|
474 | } |
---|
475 | |
---|
476 | |
---|
477 | double |
---|
478 | GaussianShell(double w[], double x) |
---|
479 | { |
---|
480 | // variables are: |
---|
481 | //[0] scale |
---|
482 | //[1] radius (ᅵ) |
---|
483 | //[2] thick (ᅵ) (thickness parameter - this is the std. dev. of the Gaussian width of the shell) |
---|
484 | //[3] polydispersity of the radius |
---|
485 | //[4] sld shell (ᅵ-2) |
---|
486 | //[5] sld solvent |
---|
487 | //[6] background (cm-1) |
---|
488 | |
---|
489 | double scale,rad,delrho,bkg,del,thick,pd,sig,pi; |
---|
490 | double t1,t2,t3,t4,retval,exfact,vshell,vexcl,sldShell,sldSolvent; |
---|
491 | scale = w[0]; |
---|
492 | rad = w[1]; |
---|
493 | thick = w[2]; |
---|
494 | pd = w[3]; |
---|
495 | sldShell = w[4]; |
---|
496 | sldSolvent = w[5]; |
---|
497 | bkg = w[6]; |
---|
498 | |
---|
499 | delrho = w[4] - w[5]; |
---|
500 | sig = pd*rad; |
---|
501 | |
---|
502 | pi = 4.0*atan(1.0); |
---|
503 | |
---|
504 | ///APPROXIMATION (see eqn 4 - but not a bad approximation) |
---|
505 | // del is the equivalent shell thickness with sharp boundaries, centered at mean radius |
---|
506 | del = thick*sqrt(2.0*pi); |
---|
507 | |
---|
508 | // calculate the polydisperse shell volume and the excluded volume |
---|
509 | vshell=4.0*pi/3.0*( pow((rad+del/2.0),3) - pow((rad-del/2.0),3) ) *(1.0+pd*pd); |
---|
510 | vexcl=4.0*pi/3.0*( pow((rad+del/2.0),3) ) *(1.0+pd*pd); |
---|
511 | |
---|
512 | //intensity, eqn 9(a-d) |
---|
513 | exfact = exp(-2.0*sig*sig*x*x); |
---|
514 | |
---|
515 | t1 = 0.5*x*x*thick*thick*thick*thick*(1.0+cos(2.0*x*rad)*exfact); |
---|
516 | t2 = x*thick*thick*(rad*sin(2.0*x*rad) + 2.0*x*sig*sig*cos(2.0*x*rad))*exfact; |
---|
517 | t3 = 0.5*rad*rad*(1.0-cos(2.0*x*rad)*exfact); |
---|
518 | t4 = 0.5*sig*sig*(1.0+4.0*x*rad*sin(2.0*x*rad)*exfact+cos(2.0*x*rad)*(4.0*sig*sig*x*x-1.0)*exfact); |
---|
519 | |
---|
520 | retval = t1+t2+t3+t4; |
---|
521 | retval *= exp(-1.0*x*x*thick*thick); |
---|
522 | retval *= (del*del/x/x); |
---|
523 | retval *= 16.0*pi*pi*delrho*delrho*scale; |
---|
524 | retval *= 1.0e8; |
---|
525 | |
---|
526 | //NORMALIZED by the AVERAGE shell volume, since scale is the volume fraction of material |
---|
527 | // retval /= vshell |
---|
528 | retval /= vexcl; |
---|
529 | //re-normalize by polydisperse sphere volume, Gaussian distribution |
---|
530 | retval /= (1.0+3.0*pd*pd); |
---|
531 | |
---|
532 | retval += bkg; |
---|
533 | |
---|
534 | return(retval); |
---|
535 | } |
---|
536 | |
---|
537 | |
---|