1 | """ |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | """ |
---|
14 | |
---|
15 | """ |
---|
16 | Class definitions for python dispersion model for |
---|
17 | model parameters. These classes are bridges to the C++ |
---|
18 | dispersion object. |
---|
19 | |
---|
20 | The ArrayDispersion class takes in numpy arrays only. |
---|
21 | |
---|
22 | Usage: |
---|
23 | These classes can be used to set the dispersion model of a SANS model |
---|
24 | parameter: |
---|
25 | |
---|
26 | cyl = CylinderModel() |
---|
27 | cyl.set_dispersion('radius', GaussianDispersion()) |
---|
28 | |
---|
29 | |
---|
30 | After the dispersion model is set, you can access it's |
---|
31 | parameter through the dispersion dictionary: |
---|
32 | |
---|
33 | cyl.dispersion['radius']['width'] = 5.0 |
---|
34 | |
---|
35 | TODO: For backward compatibility, the model parameters are still kept in |
---|
36 | a dictionary. The next iteration of refactoring work should involve moving |
---|
37 | away from value-based parameters to object-based parameter. We want to |
---|
38 | store parameters as objects so that we can unify the 'params' and 'dispersion' |
---|
39 | dictionaries into a single dictionary of parameter objects that hold the |
---|
40 | complete information about the parameter (units, limits, dispersion model, etc...). |
---|
41 | |
---|
42 | |
---|
43 | """ |
---|
44 | import sans_extension.c_models as c_models |
---|
45 | |
---|
46 | class DispersionModel: |
---|
47 | """ |
---|
48 | Python bridge class for a basic dispersion model |
---|
49 | class with a constant parameter value distribution |
---|
50 | """ |
---|
51 | def __init__(self): |
---|
52 | self.cdisp = c_models.new_dispersion_model() |
---|
53 | |
---|
54 | def set_weights(self, values, weights): |
---|
55 | """ |
---|
56 | Set the weights of an array dispersion |
---|
57 | """ |
---|
58 | message = "set_weights is not available for DispersionModel.\n" |
---|
59 | message += " Solution: Use an ArrayDispersion object" |
---|
60 | raise "RuntimeError", message |
---|
61 | |
---|
62 | class GaussianDispersion(DispersionModel): |
---|
63 | """ |
---|
64 | Python bridge class for a dispersion model based |
---|
65 | on a Gaussian distribution. |
---|
66 | """ |
---|
67 | def __init__(self): |
---|
68 | self.cdisp = c_models.new_gaussian_model() |
---|
69 | |
---|
70 | def set_weights(self, values, weights): |
---|
71 | """ |
---|
72 | Set the weights of an array dispersion |
---|
73 | """ |
---|
74 | message = "set_weights is not available for GaussiantDispersion.\n" |
---|
75 | message += " Solution: Use an ArrayDispersion object" |
---|
76 | raise "RuntimeError", message |
---|
77 | |
---|
78 | class ArrayDispersion(DispersionModel): |
---|
79 | """ |
---|
80 | Python bridge class for a dispersion model based on arrays. |
---|
81 | The user has to set a weight distribution that |
---|
82 | will be used in the averaging the model parameter |
---|
83 | it is applied to. |
---|
84 | """ |
---|
85 | def __init__(self): |
---|
86 | self.cdisp = c_models.new_array_model() |
---|
87 | |
---|
88 | def set_weights(self, values, weights): |
---|
89 | """ |
---|
90 | Set the weights of an array dispersion |
---|
91 | Only accept numpy arrays. |
---|
92 | @param values: numpy array of values |
---|
93 | @param weights: numpy array of weights for each value entry |
---|
94 | """ |
---|
95 | if len(values) != len(weights): |
---|
96 | raise ValueError, "ArrayDispersion.set_weights: given arrays are of different lengths" |
---|
97 | |
---|
98 | c_models.set_dispersion_weights(self.cdisp, values, weights) |
---|
99 | |
---|
100 | |
---|