source: sasview/sansmodels/src/sans/models/c_models/vesicle.cpp @ e594bb0

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since e594bb0 was c451be9, checked in by Jae Cho <jhjcho@…>, 15 years ago

corrections on the definition of polydispersity as suggested by steve K: should be normalized by average volume

  • Property mode set to 100644
File size: 4.4 KB
RevLine 
[3d25331f]1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 */
21
22#include <math.h>
23#include "models.hh"
24#include "parameters.hh"
25#include <stdio.h>
26using namespace std;
27
28extern "C" {
29        #include "libSphere.h"
[5eb9154]30        #include "vesicle.h"
[3d25331f]31}
32
33VesicleModel :: VesicleModel() {
34        scale      = Parameter(1.0);
[e2afadf]35        radius     = Parameter(100.0, true);
36        radius.set_min(0.0);
[42f193a]37        thickness  = Parameter(30.0, true);
38        thickness.set_min(0.0);
[3d25331f]39        core_sld   = Parameter(6.36e-6);
40        shell_sld   = Parameter(5.0e-7);
41        background = Parameter(0.0);
42}
43
44/**
45 * Function to evaluate 1D scattering function
46 * The NIST IGOR library is used for the actual calculation.
47 * @param q: q-value
48 * @return: function value
49 */
50double VesicleModel :: operator()(double q) {
51        double dp[6];
52
53        // Fill parameter array for IGOR library
54        // Add the background after averaging
55        dp[0] = scale();
[e2afadf]56        dp[1] = radius();
[3d25331f]57        dp[2] = thickness();
58        dp[3] = core_sld();
59        dp[4] = shell_sld();
[9188cc1]60        dp[5] = 0.0;
[42f193a]61
[3d25331f]62
63        // Get the dispersion points for the core radius
[e2afadf]64        vector<WeightPoint> weights_radius;
65        radius.get_weights(weights_radius);
[42f193a]66        // Get the dispersion points for the thickness
67        vector<WeightPoint> weights_thickness;
68        thickness.get_weights(weights_thickness);
[3d25331f]69
70        // Perform the computation, with all weight points
71        double sum = 0.0;
72        double norm = 0.0;
[c451be9]73        double vol = 0.0;
[3d25331f]74
75        // Loop over radius weight points
[e2afadf]76        for(int i=0; i< (int)weights_radius.size(); i++) {
77                dp[1] = weights_radius[i].value;
78                for(int j=0; j< (int)weights_thickness.size(); j++) {
[42f193a]79                        dp[2] = weights_thickness[j].value;
[e2afadf]80                        sum += weights_radius[i].weight
[c451be9]81                                * weights_thickness[j].weight * VesicleForm(dp, q)
82                                *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3));
83                        //Find average volume
84                        vol += weights_radius[i].weight * weights_thickness[j].weight
85                                *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3));
[e2afadf]86                        norm += weights_radius[i].weight * weights_thickness[j].weight;
[42f193a]87                }
[3d25331f]88        }
[c451be9]89        if (vol != 0.0 && norm != 0.0) {
90                //Re-normalize by avg volume
91                sum = sum/(vol/norm);}
92
[3d25331f]93        return sum/norm + background();
94}
95
96/**
97 * Function to evaluate 2D scattering function
98 * @param q_x: value of Q along x
99 * @param q_y: value of Q along y
100 * @return: function value
101 */
102double VesicleModel :: operator()(double qx, double qy) {
103        double q = sqrt(qx*qx + qy*qy);
104        return (*this).operator()(q);
105}
106
107/**
108 * Function to evaluate 2D scattering function
109 * @param pars: parameters of the vesicle
110 * @param q: q-value
111 * @param phi: angle phi
112 * @return: function value
113 */
114double VesicleModel :: evaluate_rphi(double q, double phi) {
115        return (*this).operator()(q);
116}
[5eb9154]117/**
118 * Function to calculate effective radius
119 * @return: effective radius value
120 */
121double VesicleModel :: calculate_ER() {
122        VesicleParameters dp;
123
124        dp.radius     = radius();
125        dp.thickness  = thickness();
126
127        double rad_out = 0.0;
128
129        // Perform the computation, with all weight points
130        double sum = 0.0;
131        double norm = 0.0;
132
133
134        // Get the dispersion points for the major shell
135        vector<WeightPoint> weights_thickness;
136        thickness.get_weights(weights_thickness);
137
138        // Get the dispersion points for the minor shell
139        vector<WeightPoint> weights_radius ;
140        radius.get_weights(weights_radius);
141
142        // Loop over major shell weight points
143        for(int j=0; j< (int)weights_thickness.size(); j++) {
144                dp.thickness = weights_thickness[j].value;
145                for(int k=0; k< (int)weights_radius.size(); k++) {
146                        dp.radius = weights_radius[k].value;
147                        sum += weights_thickness[j].weight
148                                * weights_radius[k].weight*(dp.radius+dp.thickness);
149                        norm += weights_thickness[j].weight* weights_radius[k].weight;
150                }
151        }
152        if (norm != 0){
153                //return the averaged value
154                rad_out =  sum/norm;}
155        else{
156                //return normal value
157                rad_out = (dp.radius+dp.thickness);}
158
159        return rad_out;
160}
Note: See TracBrowser for help on using the repository browser.