[3d25331f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "models.hh" |
---|
| 24 | #include "parameters.hh" |
---|
| 25 | #include <stdio.h> |
---|
| 26 | using namespace std; |
---|
| 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libSphere.h" |
---|
[5eb9154] | 30 | #include "vesicle.h" |
---|
[3d25331f] | 31 | } |
---|
| 32 | |
---|
| 33 | VesicleModel :: VesicleModel() { |
---|
| 34 | scale = Parameter(1.0); |
---|
[e2afadf] | 35 | radius = Parameter(100.0, true); |
---|
| 36 | radius.set_min(0.0); |
---|
[42f193a] | 37 | thickness = Parameter(30.0, true); |
---|
| 38 | thickness.set_min(0.0); |
---|
[3d25331f] | 39 | core_sld = Parameter(6.36e-6); |
---|
| 40 | shell_sld = Parameter(5.0e-7); |
---|
| 41 | background = Parameter(0.0); |
---|
| 42 | } |
---|
| 43 | |
---|
| 44 | /** |
---|
| 45 | * Function to evaluate 1D scattering function |
---|
| 46 | * The NIST IGOR library is used for the actual calculation. |
---|
| 47 | * @param q: q-value |
---|
| 48 | * @return: function value |
---|
| 49 | */ |
---|
| 50 | double VesicleModel :: operator()(double q) { |
---|
| 51 | double dp[6]; |
---|
| 52 | |
---|
| 53 | // Fill parameter array for IGOR library |
---|
| 54 | // Add the background after averaging |
---|
| 55 | dp[0] = scale(); |
---|
[e2afadf] | 56 | dp[1] = radius(); |
---|
[3d25331f] | 57 | dp[2] = thickness(); |
---|
| 58 | dp[3] = core_sld(); |
---|
| 59 | dp[4] = shell_sld(); |
---|
[9188cc1] | 60 | dp[5] = 0.0; |
---|
[42f193a] | 61 | |
---|
[3d25331f] | 62 | |
---|
| 63 | // Get the dispersion points for the core radius |
---|
[e2afadf] | 64 | vector<WeightPoint> weights_radius; |
---|
| 65 | radius.get_weights(weights_radius); |
---|
[42f193a] | 66 | // Get the dispersion points for the thickness |
---|
| 67 | vector<WeightPoint> weights_thickness; |
---|
| 68 | thickness.get_weights(weights_thickness); |
---|
[3d25331f] | 69 | |
---|
| 70 | // Perform the computation, with all weight points |
---|
| 71 | double sum = 0.0; |
---|
| 72 | double norm = 0.0; |
---|
[c451be9] | 73 | double vol = 0.0; |
---|
[3d25331f] | 74 | |
---|
| 75 | // Loop over radius weight points |
---|
[e2afadf] | 76 | for(int i=0; i< (int)weights_radius.size(); i++) { |
---|
| 77 | dp[1] = weights_radius[i].value; |
---|
| 78 | for(int j=0; j< (int)weights_thickness.size(); j++) { |
---|
[42f193a] | 79 | dp[2] = weights_thickness[j].value; |
---|
[e2afadf] | 80 | sum += weights_radius[i].weight |
---|
[c451be9] | 81 | * weights_thickness[j].weight * VesicleForm(dp, q) |
---|
| 82 | *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3)); |
---|
| 83 | //Find average volume |
---|
| 84 | vol += weights_radius[i].weight * weights_thickness[j].weight |
---|
| 85 | *(pow(weights_radius[i].value+weights_thickness[j].value,3)-pow(weights_radius[i].value,3)); |
---|
[e2afadf] | 86 | norm += weights_radius[i].weight * weights_thickness[j].weight; |
---|
[42f193a] | 87 | } |
---|
[3d25331f] | 88 | } |
---|
[c451be9] | 89 | if (vol != 0.0 && norm != 0.0) { |
---|
| 90 | //Re-normalize by avg volume |
---|
| 91 | sum = sum/(vol/norm);} |
---|
| 92 | |
---|
[3d25331f] | 93 | return sum/norm + background(); |
---|
| 94 | } |
---|
| 95 | |
---|
| 96 | /** |
---|
| 97 | * Function to evaluate 2D scattering function |
---|
| 98 | * @param q_x: value of Q along x |
---|
| 99 | * @param q_y: value of Q along y |
---|
| 100 | * @return: function value |
---|
| 101 | */ |
---|
| 102 | double VesicleModel :: operator()(double qx, double qy) { |
---|
| 103 | double q = sqrt(qx*qx + qy*qy); |
---|
| 104 | return (*this).operator()(q); |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | /** |
---|
| 108 | * Function to evaluate 2D scattering function |
---|
| 109 | * @param pars: parameters of the vesicle |
---|
| 110 | * @param q: q-value |
---|
| 111 | * @param phi: angle phi |
---|
| 112 | * @return: function value |
---|
| 113 | */ |
---|
| 114 | double VesicleModel :: evaluate_rphi(double q, double phi) { |
---|
| 115 | return (*this).operator()(q); |
---|
| 116 | } |
---|
[5eb9154] | 117 | /** |
---|
| 118 | * Function to calculate effective radius |
---|
| 119 | * @return: effective radius value |
---|
| 120 | */ |
---|
| 121 | double VesicleModel :: calculate_ER() { |
---|
| 122 | VesicleParameters dp; |
---|
| 123 | |
---|
| 124 | dp.radius = radius(); |
---|
| 125 | dp.thickness = thickness(); |
---|
| 126 | |
---|
| 127 | double rad_out = 0.0; |
---|
| 128 | |
---|
| 129 | // Perform the computation, with all weight points |
---|
| 130 | double sum = 0.0; |
---|
| 131 | double norm = 0.0; |
---|
| 132 | |
---|
| 133 | |
---|
| 134 | // Get the dispersion points for the major shell |
---|
| 135 | vector<WeightPoint> weights_thickness; |
---|
| 136 | thickness.get_weights(weights_thickness); |
---|
| 137 | |
---|
| 138 | // Get the dispersion points for the minor shell |
---|
| 139 | vector<WeightPoint> weights_radius ; |
---|
| 140 | radius.get_weights(weights_radius); |
---|
| 141 | |
---|
| 142 | // Loop over major shell weight points |
---|
| 143 | for(int j=0; j< (int)weights_thickness.size(); j++) { |
---|
| 144 | dp.thickness = weights_thickness[j].value; |
---|
| 145 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 146 | dp.radius = weights_radius[k].value; |
---|
| 147 | sum += weights_thickness[j].weight |
---|
| 148 | * weights_radius[k].weight*(dp.radius+dp.thickness); |
---|
| 149 | norm += weights_thickness[j].weight* weights_radius[k].weight; |
---|
| 150 | } |
---|
| 151 | } |
---|
| 152 | if (norm != 0){ |
---|
| 153 | //return the averaged value |
---|
| 154 | rad_out = sum/norm;} |
---|
| 155 | else{ |
---|
| 156 | //return normal value |
---|
| 157 | rad_out = (dp.radius+dp.thickness);} |
---|
| 158 | |
---|
| 159 | return rad_out; |
---|
| 160 | } |
---|