1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
21 | */ |
---|
22 | |
---|
23 | #include <math.h> |
---|
24 | #include "models.hh" |
---|
25 | #include "parameters.hh" |
---|
26 | #include <stdio.h> |
---|
27 | using namespace std; |
---|
28 | |
---|
29 | extern "C" { |
---|
30 | #include "libCylinder.h" |
---|
31 | #include "libStructureFactor.h" |
---|
32 | #include "triaxial_ellipsoid.h" |
---|
33 | } |
---|
34 | |
---|
35 | TriaxialEllipsoidModel :: TriaxialEllipsoidModel() { |
---|
36 | scale = Parameter(1.0); |
---|
37 | semi_axisA = Parameter(35.0, true); |
---|
38 | semi_axisA.set_min(0.0); |
---|
39 | semi_axisB = Parameter(100.0, true); |
---|
40 | semi_axisB.set_min(0.0); |
---|
41 | semi_axisC = Parameter(400.0, true); |
---|
42 | semi_axisC.set_min(0.0); |
---|
43 | sldEll = Parameter(1.0e-6); |
---|
44 | sldSolv = Parameter(6.3e-6); |
---|
45 | background = Parameter(0.0); |
---|
46 | axis_theta = Parameter(57.325, true); |
---|
47 | axis_phi = Parameter(57.325, true); |
---|
48 | axis_psi = Parameter(0.0, true); |
---|
49 | } |
---|
50 | |
---|
51 | /** |
---|
52 | * Function to evaluate 1D scattering function |
---|
53 | * The NIST IGOR library is used for the actual calculation. |
---|
54 | * @param q: q-value |
---|
55 | * @return: function value |
---|
56 | */ |
---|
57 | double TriaxialEllipsoidModel :: operator()(double q) { |
---|
58 | double dp[7]; |
---|
59 | |
---|
60 | // Fill parameter array for IGOR library |
---|
61 | // Add the background after averaging |
---|
62 | dp[0] = scale(); |
---|
63 | dp[1] = semi_axisA(); |
---|
64 | dp[2] = semi_axisB(); |
---|
65 | dp[3] = semi_axisC(); |
---|
66 | dp[4] = sldEll(); |
---|
67 | dp[5] = sldSolv(); |
---|
68 | dp[6] = 0.0; |
---|
69 | |
---|
70 | // Get the dispersion points for the semi axis A |
---|
71 | vector<WeightPoint> weights_semi_axisA; |
---|
72 | semi_axisA.get_weights(weights_semi_axisA); |
---|
73 | |
---|
74 | // Get the dispersion points for the semi axis B |
---|
75 | vector<WeightPoint> weights_semi_axisB; |
---|
76 | semi_axisB.get_weights(weights_semi_axisB); |
---|
77 | |
---|
78 | // Get the dispersion points for the semi axis C |
---|
79 | vector<WeightPoint> weights_semi_axisC; |
---|
80 | semi_axisC.get_weights(weights_semi_axisC); |
---|
81 | |
---|
82 | // Perform the computation, with all weight points |
---|
83 | double sum = 0.0; |
---|
84 | double norm = 0.0; |
---|
85 | double vol = 0.0; |
---|
86 | |
---|
87 | // Loop over semi axis A weight points |
---|
88 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
89 | dp[1] = weights_semi_axisA[i].value; |
---|
90 | |
---|
91 | // Loop over semi axis B weight points |
---|
92 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
93 | dp[2] = weights_semi_axisB[j].value; |
---|
94 | |
---|
95 | // Loop over semi axis C weight points |
---|
96 | for(int k=0; k< (int)weights_semi_axisC.size(); k++) { |
---|
97 | dp[3] = weights_semi_axisC[k].value; |
---|
98 | //Un-normalize by volume |
---|
99 | sum += weights_semi_axisA[i].weight |
---|
100 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight* TriaxialEllipsoid(dp, q) |
---|
101 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
102 | //Find average volume |
---|
103 | vol += weights_semi_axisA[i].weight |
---|
104 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight |
---|
105 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
106 | |
---|
107 | norm += weights_semi_axisA[i].weight |
---|
108 | * weights_semi_axisB[j].weight * weights_semi_axisC[k].weight; |
---|
109 | } |
---|
110 | } |
---|
111 | } |
---|
112 | if (vol != 0.0 && norm != 0.0) { |
---|
113 | //Re-normalize by avg volume |
---|
114 | sum = sum/(vol/norm);} |
---|
115 | |
---|
116 | return sum/norm + background(); |
---|
117 | } |
---|
118 | |
---|
119 | /** |
---|
120 | * Function to evaluate 2D scattering function |
---|
121 | * @param q_x: value of Q along x |
---|
122 | * @param q_y: value of Q along y |
---|
123 | * @return: function value |
---|
124 | */ |
---|
125 | double TriaxialEllipsoidModel :: operator()(double qx, double qy) { |
---|
126 | TriaxialEllipsoidParameters dp; |
---|
127 | // Fill parameter array |
---|
128 | dp.scale = scale(); |
---|
129 | dp.semi_axisA = semi_axisA(); |
---|
130 | dp.semi_axisB = semi_axisB(); |
---|
131 | dp.semi_axisC = semi_axisC(); |
---|
132 | dp.sldEll = sldEll(); |
---|
133 | dp.sldSolv = sldSolv(); |
---|
134 | dp.background = 0.0; |
---|
135 | dp.axis_theta = axis_theta(); |
---|
136 | dp.axis_phi = axis_phi(); |
---|
137 | dp.axis_psi = axis_psi(); |
---|
138 | |
---|
139 | // Get the dispersion points for the semi_axis A |
---|
140 | vector<WeightPoint> weights_semi_axisA; |
---|
141 | semi_axisA.get_weights(weights_semi_axisA); |
---|
142 | |
---|
143 | // Get the dispersion points for the semi_axis B |
---|
144 | vector<WeightPoint> weights_semi_axisB; |
---|
145 | semi_axisB.get_weights(weights_semi_axisB); |
---|
146 | |
---|
147 | // Get the dispersion points for the semi_axis C |
---|
148 | vector<WeightPoint> weights_semi_axisC; |
---|
149 | semi_axisC.get_weights(weights_semi_axisC); |
---|
150 | |
---|
151 | // Get angular averaging for theta |
---|
152 | vector<WeightPoint> weights_theta; |
---|
153 | axis_theta.get_weights(weights_theta); |
---|
154 | |
---|
155 | // Get angular averaging for phi |
---|
156 | vector<WeightPoint> weights_phi; |
---|
157 | axis_phi.get_weights(weights_phi); |
---|
158 | |
---|
159 | // Get angular averaging for psi |
---|
160 | vector<WeightPoint> weights_psi; |
---|
161 | axis_psi.get_weights(weights_psi); |
---|
162 | |
---|
163 | // Perform the computation, with all weight points |
---|
164 | double sum = 0.0; |
---|
165 | double norm = 0.0; |
---|
166 | double norm_vol = 0.0; |
---|
167 | double vol = 0.0; |
---|
168 | double pi = 4.0*atan(1.0); |
---|
169 | // Loop over semi axis A weight points |
---|
170 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
171 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
172 | |
---|
173 | // Loop over semi axis B weight points |
---|
174 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
175 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
176 | |
---|
177 | // Loop over semi axis C weight points |
---|
178 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
179 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
180 | |
---|
181 | // Average over theta distribution |
---|
182 | for(int l=0; l< (int)weights_theta.size(); l++) { |
---|
183 | dp.axis_theta = weights_theta[l].value; |
---|
184 | |
---|
185 | // Average over phi distribution |
---|
186 | for(int m=0; m <(int)weights_phi.size(); m++) { |
---|
187 | dp.axis_phi = weights_phi[m].value; |
---|
188 | // Average over psi distribution |
---|
189 | for(int n=0; n <(int)weights_psi.size(); n++) { |
---|
190 | dp.axis_psi = weights_psi[n].value; |
---|
191 | //Un-normalize by volume |
---|
192 | double _ptvalue = weights_semi_axisA[i].weight |
---|
193 | * weights_semi_axisB[j].weight |
---|
194 | * weights_semi_axisC[k].weight |
---|
195 | * weights_theta[l].weight |
---|
196 | * weights_phi[m].weight |
---|
197 | * weights_psi[n].weight |
---|
198 | * triaxial_ellipsoid_analytical_2DXY(&dp, qx, qy) |
---|
199 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
200 | if (weights_theta.size()>1) { |
---|
201 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
202 | } |
---|
203 | sum += _ptvalue; |
---|
204 | //Find average volume |
---|
205 | vol += weights_semi_axisA[i].weight |
---|
206 | * weights_semi_axisB[j].weight |
---|
207 | * weights_semi_axisC[k].weight |
---|
208 | * weights_semi_axisA[i].value*weights_semi_axisB[j].value*weights_semi_axisC[k].value; |
---|
209 | //Find norm for volume |
---|
210 | norm_vol += weights_semi_axisA[i].weight |
---|
211 | * weights_semi_axisB[j].weight |
---|
212 | * weights_semi_axisC[k].weight; |
---|
213 | |
---|
214 | norm += weights_semi_axisA[i].weight |
---|
215 | * weights_semi_axisB[j].weight |
---|
216 | * weights_semi_axisC[k].weight |
---|
217 | * weights_theta[l].weight |
---|
218 | * weights_phi[m].weight |
---|
219 | * weights_psi[n].weight; |
---|
220 | } |
---|
221 | } |
---|
222 | |
---|
223 | } |
---|
224 | } |
---|
225 | } |
---|
226 | } |
---|
227 | // Averaging in theta needs an extra normalization |
---|
228 | // factor to account for the sin(theta) term in the |
---|
229 | // integration (see documentation). |
---|
230 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
231 | |
---|
232 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
233 | //Re-normalize by avg volume |
---|
234 | sum = sum/(vol/norm_vol);} |
---|
235 | |
---|
236 | return sum/norm + background(); |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Function to evaluate 2D scattering function |
---|
241 | * @param pars: parameters of the triaxial ellipsoid |
---|
242 | * @param q: q-value |
---|
243 | * @param phi: angle phi |
---|
244 | * @return: function value |
---|
245 | */ |
---|
246 | double TriaxialEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
247 | double qx = q*cos(phi); |
---|
248 | double qy = q*sin(phi); |
---|
249 | return (*this).operator()(qx, qy); |
---|
250 | } |
---|
251 | /** |
---|
252 | * Function to calculate effective radius |
---|
253 | * @return: effective radius value |
---|
254 | */ |
---|
255 | double TriaxialEllipsoidModel :: calculate_ER() { |
---|
256 | TriaxialEllipsoidParameters dp; |
---|
257 | |
---|
258 | dp.semi_axisA = semi_axisA(); |
---|
259 | dp.semi_axisB = semi_axisB(); |
---|
260 | //polar axis C |
---|
261 | dp.semi_axisC = semi_axisC(); |
---|
262 | |
---|
263 | double rad_out = 0.0; |
---|
264 | //Surface average radius at the equat. cross section. |
---|
265 | double suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
266 | |
---|
267 | // Perform the computation, with all weight points |
---|
268 | double sum = 0.0; |
---|
269 | double norm = 0.0; |
---|
270 | |
---|
271 | // Get the dispersion points for the semi_axis A |
---|
272 | vector<WeightPoint> weights_semi_axisA; |
---|
273 | semi_axisA.get_weights(weights_semi_axisA); |
---|
274 | |
---|
275 | // Get the dispersion points for the semi_axis B |
---|
276 | vector<WeightPoint> weights_semi_axisB; |
---|
277 | semi_axisB.get_weights(weights_semi_axisB); |
---|
278 | |
---|
279 | // Get the dispersion points for the semi_axis C |
---|
280 | vector<WeightPoint> weights_semi_axisC; |
---|
281 | semi_axisC.get_weights(weights_semi_axisC); |
---|
282 | |
---|
283 | // Loop over semi axis A weight points |
---|
284 | for(int i=0; i< (int)weights_semi_axisA.size(); i++) { |
---|
285 | dp.semi_axisA = weights_semi_axisA[i].value; |
---|
286 | |
---|
287 | // Loop over semi axis B weight points |
---|
288 | for(int j=0; j< (int)weights_semi_axisB.size(); j++) { |
---|
289 | dp.semi_axisB = weights_semi_axisB[j].value; |
---|
290 | |
---|
291 | // Loop over semi axis C weight points |
---|
292 | for(int k=0; k < (int)weights_semi_axisC.size(); k++) { |
---|
293 | dp.semi_axisC = weights_semi_axisC[k].value; |
---|
294 | |
---|
295 | //Calculate surface averaged radius |
---|
296 | suf_rad = sqrt(dp.semi_axisA * dp.semi_axisB); |
---|
297 | |
---|
298 | //Sum |
---|
299 | sum += weights_semi_axisA[i].weight |
---|
300 | * weights_semi_axisB[j].weight |
---|
301 | * weights_semi_axisC[k].weight * DiamEllip(dp.semi_axisC, suf_rad)/2.0; |
---|
302 | //Norm |
---|
303 | norm += weights_semi_axisA[i].weight* weights_semi_axisB[j].weight |
---|
304 | * weights_semi_axisC[k].weight; |
---|
305 | } |
---|
306 | } |
---|
307 | } |
---|
308 | if (norm != 0){ |
---|
309 | //return the averaged value |
---|
310 | rad_out = sum/norm;} |
---|
311 | else{ |
---|
312 | //return normal value |
---|
313 | rad_out = DiamEllip(dp.semi_axisC, suf_rad)/2.0;} |
---|
314 | |
---|
315 | return rad_out; |
---|
316 | } |
---|