[975ec8e] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
[5eb9154] | 31 | #include "libStructureFactor.h" |
---|
[975ec8e] | 32 | #include "spheroid.h" |
---|
| 33 | } |
---|
| 34 | |
---|
[eddff027] | 35 | CoreShellEllipsoidModel :: CoreShellEllipsoidModel() { |
---|
[975ec8e] | 36 | scale = Parameter(1.0); |
---|
| 37 | equat_core = Parameter(200.0, true); |
---|
| 38 | equat_core.set_min(0.0); |
---|
| 39 | polar_core = Parameter(20.0, true); |
---|
| 40 | polar_core.set_min(0.0); |
---|
| 41 | equat_shell = Parameter(250.0, true); |
---|
| 42 | equat_shell.set_min(0.0); |
---|
| 43 | polar_shell = Parameter(30.0, true); |
---|
| 44 | polar_shell.set_min(0.0); |
---|
[f10063e] | 45 | sld_core = Parameter(2e-6); |
---|
| 46 | sld_shell = Parameter(1e-6); |
---|
[975ec8e] | 47 | sld_solvent = Parameter(6.3e-6); |
---|
| 48 | background = Parameter(0.0); |
---|
| 49 | axis_theta = Parameter(0.0, true); |
---|
| 50 | axis_phi = Parameter(0.0, true); |
---|
| 51 | |
---|
| 52 | } |
---|
| 53 | |
---|
| 54 | /** |
---|
| 55 | * Function to evaluate 1D scattering function |
---|
| 56 | * The NIST IGOR library is used for the actual calculation. |
---|
| 57 | * @param q: q-value |
---|
| 58 | * @return: function value |
---|
| 59 | */ |
---|
[eddff027] | 60 | double CoreShellEllipsoidModel :: operator()(double q) { |
---|
[f10063e] | 61 | double dp[9]; |
---|
[975ec8e] | 62 | |
---|
| 63 | // Fill parameter array for IGOR library |
---|
| 64 | // Add the background after averaging |
---|
| 65 | dp[0] = scale(); |
---|
| 66 | dp[1] = equat_core(); |
---|
| 67 | dp[2] = polar_core(); |
---|
| 68 | dp[3] = equat_shell(); |
---|
| 69 | dp[4] = polar_shell(); |
---|
[f10063e] | 70 | dp[5] = sld_core(); |
---|
| 71 | dp[6] = sld_shell(); |
---|
| 72 | dp[7] = sld_solvent(); |
---|
| 73 | dp[8] = 0.0; |
---|
[975ec8e] | 74 | |
---|
| 75 | // Get the dispersion points for the major core |
---|
| 76 | vector<WeightPoint> weights_equat_core; |
---|
| 77 | equat_core.get_weights(weights_equat_core); |
---|
| 78 | |
---|
| 79 | // Get the dispersion points for the minor core |
---|
| 80 | vector<WeightPoint> weights_polar_core; |
---|
| 81 | polar_core.get_weights(weights_polar_core); |
---|
| 82 | |
---|
| 83 | // Get the dispersion points for the major shell |
---|
| 84 | vector<WeightPoint> weights_equat_shell; |
---|
| 85 | equat_shell.get_weights(weights_equat_shell); |
---|
| 86 | |
---|
| 87 | // Get the dispersion points for the minor_shell |
---|
| 88 | vector<WeightPoint> weights_polar_shell; |
---|
| 89 | polar_shell.get_weights(weights_polar_shell); |
---|
| 90 | |
---|
| 91 | |
---|
| 92 | // Perform the computation, with all weight points |
---|
| 93 | double sum = 0.0; |
---|
| 94 | double norm = 0.0; |
---|
[c451be9] | 95 | double vol = 0.0; |
---|
[975ec8e] | 96 | |
---|
| 97 | // Loop over major core weight points |
---|
| 98 | for(int i=0; i<(int)weights_equat_core.size(); i++) { |
---|
| 99 | dp[1] = weights_equat_core[i].value; |
---|
| 100 | |
---|
| 101 | // Loop over minor core weight points |
---|
| 102 | for(int j=0; j<(int)weights_polar_core.size(); j++) { |
---|
| 103 | dp[2] = weights_polar_core[j].value; |
---|
| 104 | |
---|
| 105 | // Loop over major shell weight points |
---|
| 106 | for(int k=0; k<(int)weights_equat_shell.size(); k++) { |
---|
| 107 | dp[3] = weights_equat_shell[k].value; |
---|
| 108 | |
---|
| 109 | // Loop over minor shell weight points |
---|
| 110 | for(int l=0; l<(int)weights_polar_shell.size(); l++) { |
---|
| 111 | dp[4] = weights_polar_shell[l].value; |
---|
[c451be9] | 112 | //Un-normalize by volume |
---|
[975ec8e] | 113 | sum += weights_equat_core[i].weight* weights_polar_core[j].weight * weights_equat_shell[k].weight |
---|
[f10063e] | 114 | * weights_polar_shell[l].weight * OblateForm(dp, q) |
---|
[c451be9] | 115 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 116 | //Find average volume |
---|
| 117 | vol += weights_equat_core[i].weight* weights_polar_core[j].weight |
---|
| 118 | * weights_equat_shell[k].weight |
---|
| 119 | * weights_polar_shell[l].weight |
---|
| 120 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
[975ec8e] | 121 | norm += weights_equat_core[i].weight* weights_polar_core[j].weight * weights_equat_shell[k].weight |
---|
| 122 | * weights_polar_shell[l].weight; |
---|
| 123 | } |
---|
| 124 | } |
---|
| 125 | } |
---|
| 126 | } |
---|
[c451be9] | 127 | if (vol != 0.0 && norm != 0.0) { |
---|
| 128 | //Re-normalize by avg volume |
---|
| 129 | sum = sum/(vol/norm);} |
---|
[975ec8e] | 130 | return sum/norm + background(); |
---|
| 131 | } |
---|
| 132 | |
---|
| 133 | /** |
---|
| 134 | * Function to evaluate 2D scattering function |
---|
| 135 | * @param q_x: value of Q along x |
---|
| 136 | * @param q_y: value of Q along y |
---|
| 137 | * @return: function value |
---|
| 138 | */ |
---|
| 139 | /* |
---|
| 140 | double OblateModel :: operator()(double qx, double qy) { |
---|
| 141 | double q = sqrt(qx*qx + qy*qy); |
---|
| 142 | |
---|
| 143 | return (*this).operator()(q); |
---|
| 144 | } |
---|
| 145 | */ |
---|
| 146 | |
---|
| 147 | /** |
---|
| 148 | * Function to evaluate 2D scattering function |
---|
| 149 | * @param pars: parameters of the oblate |
---|
| 150 | * @param q: q-value |
---|
| 151 | * @param phi: angle phi |
---|
| 152 | * @return: function value |
---|
| 153 | */ |
---|
[eddff027] | 154 | double CoreShellEllipsoidModel :: evaluate_rphi(double q, double phi) { |
---|
[5eb9154] | 155 | double qx = q*cos(phi); |
---|
| 156 | double qy = q*sin(phi); |
---|
| 157 | return (*this).operator()(qx, qy); |
---|
[975ec8e] | 158 | } |
---|
| 159 | |
---|
[5eb9154] | 160 | /** |
---|
| 161 | * Function to evaluate 2D scattering function |
---|
| 162 | * @param q_x: value of Q along x |
---|
| 163 | * @param q_y: value of Q along y |
---|
| 164 | * @return: function value |
---|
| 165 | */ |
---|
[eddff027] | 166 | double CoreShellEllipsoidModel :: operator()(double qx, double qy) { |
---|
[975ec8e] | 167 | SpheroidParameters dp; |
---|
| 168 | // Fill parameter array |
---|
| 169 | dp.scale = scale(); |
---|
| 170 | dp.equat_core = equat_core(); |
---|
| 171 | dp.polar_core = polar_core(); |
---|
| 172 | dp.equat_shell = equat_shell(); |
---|
| 173 | dp.polar_shell = polar_shell(); |
---|
[f10063e] | 174 | dp.sld_core = sld_core(); |
---|
| 175 | dp.sld_shell = sld_shell(); |
---|
[975ec8e] | 176 | dp.sld_solvent = sld_solvent(); |
---|
[5eb9154] | 177 | dp.background = 0.0; |
---|
[975ec8e] | 178 | dp.axis_theta = axis_theta(); |
---|
| 179 | dp.axis_phi = axis_phi(); |
---|
| 180 | |
---|
| 181 | // Get the dispersion points for the major core |
---|
| 182 | vector<WeightPoint> weights_equat_core; |
---|
| 183 | equat_core.get_weights(weights_equat_core); |
---|
| 184 | |
---|
| 185 | // Get the dispersion points for the minor core |
---|
| 186 | vector<WeightPoint> weights_polar_core; |
---|
| 187 | polar_core.get_weights(weights_polar_core); |
---|
| 188 | |
---|
| 189 | // Get the dispersion points for the major shell |
---|
| 190 | vector<WeightPoint> weights_equat_shell; |
---|
| 191 | equat_shell.get_weights(weights_equat_shell); |
---|
| 192 | |
---|
| 193 | // Get the dispersion points for the minor shell |
---|
| 194 | vector<WeightPoint> weights_polar_shell; |
---|
| 195 | polar_shell.get_weights(weights_polar_shell); |
---|
| 196 | |
---|
| 197 | |
---|
| 198 | // Get angular averaging for theta |
---|
| 199 | vector<WeightPoint> weights_theta; |
---|
| 200 | axis_theta.get_weights(weights_theta); |
---|
| 201 | |
---|
| 202 | // Get angular averaging for phi |
---|
| 203 | vector<WeightPoint> weights_phi; |
---|
| 204 | axis_phi.get_weights(weights_phi); |
---|
| 205 | |
---|
| 206 | // Perform the computation, with all weight points |
---|
| 207 | double sum = 0.0; |
---|
| 208 | double norm = 0.0; |
---|
[c451be9] | 209 | double norm_vol = 0.0; |
---|
| 210 | double vol = 0.0; |
---|
[975ec8e] | 211 | |
---|
| 212 | // Loop over major core weight points |
---|
| 213 | for(int i=0; i< (int)weights_equat_core.size(); i++) { |
---|
| 214 | dp.equat_core = weights_equat_core[i].value; |
---|
| 215 | |
---|
| 216 | // Loop over minor core weight points |
---|
| 217 | for(int j=0; j< (int)weights_polar_core.size(); j++) { |
---|
| 218 | dp.polar_core = weights_polar_core[j].value; |
---|
| 219 | |
---|
| 220 | // Loop over major shell weight points |
---|
| 221 | for(int k=0; k< (int)weights_equat_shell.size(); k++) { |
---|
| 222 | dp.equat_shell = weights_equat_shell[i].value; |
---|
| 223 | |
---|
| 224 | // Loop over minor shell weight points |
---|
| 225 | for(int l=0; l< (int)weights_polar_shell.size(); l++) { |
---|
| 226 | dp.polar_shell = weights_polar_shell[l].value; |
---|
| 227 | |
---|
| 228 | // Average over theta distribution |
---|
| 229 | for(int m=0; m< (int)weights_theta.size(); m++) { |
---|
| 230 | dp.axis_theta = weights_theta[m].value; |
---|
| 231 | |
---|
| 232 | // Average over phi distribution |
---|
| 233 | for(int n=0; n< (int)weights_phi.size(); n++) { |
---|
| 234 | dp.axis_phi = weights_phi[n].value; |
---|
[c451be9] | 235 | //Un-normalize by volume |
---|
[975ec8e] | 236 | double _ptvalue = weights_equat_core[i].weight *weights_polar_core[j].weight |
---|
| 237 | * weights_equat_shell[k].weight * weights_polar_shell[l].weight |
---|
| 238 | * weights_theta[m].weight |
---|
| 239 | * weights_phi[n].weight |
---|
[c451be9] | 240 | * spheroid_analytical_2DXY(&dp, qx, qy) |
---|
| 241 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
[975ec8e] | 242 | if (weights_theta.size()>1) { |
---|
| 243 | _ptvalue *= sin(weights_theta[m].value); |
---|
| 244 | } |
---|
| 245 | sum += _ptvalue; |
---|
[c451be9] | 246 | //Find average volume |
---|
| 247 | vol += weights_equat_shell[k].weight |
---|
| 248 | * weights_polar_shell[l].weight |
---|
| 249 | * pow(weights_equat_shell[k].value,2)*weights_polar_shell[l].value; |
---|
| 250 | //Find norm for volume |
---|
| 251 | norm_vol += weights_equat_shell[k].weight |
---|
| 252 | * weights_polar_shell[l].weight; |
---|
[975ec8e] | 253 | |
---|
| 254 | norm += weights_equat_core[i].weight *weights_polar_core[j].weight |
---|
| 255 | * weights_equat_shell[k].weight * weights_polar_shell[l].weight |
---|
| 256 | * weights_theta[m].weight * weights_phi[n].weight; |
---|
| 257 | } |
---|
| 258 | } |
---|
| 259 | } |
---|
| 260 | } |
---|
| 261 | } |
---|
| 262 | } |
---|
| 263 | // Averaging in theta needs an extra normalization |
---|
| 264 | // factor to account for the sin(theta) term in the |
---|
| 265 | // integration (see documentation). |
---|
| 266 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
[c451be9] | 267 | |
---|
| 268 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 269 | //Re-normalize by avg volume |
---|
| 270 | sum = sum/(vol/norm_vol);} |
---|
| 271 | |
---|
[975ec8e] | 272 | return sum/norm + background(); |
---|
| 273 | } |
---|
| 274 | |
---|
[5eb9154] | 275 | /** |
---|
| 276 | * Function to calculate effective radius |
---|
| 277 | * @return: effective radius value |
---|
| 278 | */ |
---|
| 279 | double CoreShellEllipsoidModel :: calculate_ER() { |
---|
| 280 | SpheroidParameters dp; |
---|
| 281 | |
---|
| 282 | dp.equat_shell = equat_shell(); |
---|
| 283 | dp.polar_shell = polar_shell(); |
---|
| 284 | |
---|
| 285 | double rad_out = 0.0; |
---|
| 286 | |
---|
| 287 | // Perform the computation, with all weight points |
---|
| 288 | double sum = 0.0; |
---|
| 289 | double norm = 0.0; |
---|
| 290 | |
---|
| 291 | // Get the dispersion points for the major shell |
---|
| 292 | vector<WeightPoint> weights_equat_shell; |
---|
| 293 | equat_shell.get_weights(weights_equat_shell); |
---|
| 294 | |
---|
| 295 | // Get the dispersion points for the minor shell |
---|
| 296 | vector<WeightPoint> weights_polar_shell; |
---|
| 297 | polar_shell.get_weights(weights_polar_shell); |
---|
| 298 | |
---|
| 299 | // Loop over major shell weight points |
---|
| 300 | for(int i=0; i< (int)weights_equat_shell.size(); i++) { |
---|
| 301 | dp.equat_shell = weights_equat_shell[i].value; |
---|
| 302 | for(int k=0; k< (int)weights_polar_shell.size(); k++) { |
---|
| 303 | dp.polar_shell = weights_polar_shell[k].value; |
---|
| 304 | //Note: output of "DiamEllip(dp.polar_shell,dp.equat_shell)" is DIAMETER. |
---|
| 305 | sum +=weights_equat_shell[i].weight |
---|
| 306 | * weights_polar_shell[k].weight*DiamEllip(dp.polar_shell,dp.equat_shell)/2.0; |
---|
| 307 | norm += weights_equat_shell[i].weight* weights_polar_shell[k].weight; |
---|
| 308 | } |
---|
| 309 | } |
---|
| 310 | if (norm != 0){ |
---|
| 311 | //return the averaged value |
---|
| 312 | rad_out = sum/norm;} |
---|
| 313 | else{ |
---|
| 314 | //return normal value |
---|
| 315 | //Note: output of "DiamEllip(dp.polar_shell,dp.equat_shell)" is DIAMETER. |
---|
| 316 | rad_out = DiamEllip(dp.polar_shell,dp.equat_shell)/2.0;} |
---|
| 317 | |
---|
| 318 | return rad_out; |
---|
| 319 | } |
---|