1 | |
---|
2 | #include <math.h> |
---|
3 | #include "models.hh" |
---|
4 | #include "parameters.hh" |
---|
5 | #include <stdio.h> |
---|
6 | using namespace std; |
---|
7 | |
---|
8 | extern "C" { |
---|
9 | #include "pearlnecklace.h" |
---|
10 | } |
---|
11 | |
---|
12 | PearlNecklaceModel :: PearlNecklaceModel() { |
---|
13 | scale = Parameter(1.0); |
---|
14 | radius = Parameter(80.0, true); |
---|
15 | radius.set_min(0.0); |
---|
16 | edge_separation = Parameter(350.0, true); |
---|
17 | edge_separation.set_min(0.0); |
---|
18 | thick_string = Parameter(2.5, true); |
---|
19 | thick_string.set_min(0.0); |
---|
20 | num_pearls = Parameter(3); |
---|
21 | num_pearls.set_min(0.0); |
---|
22 | sld_pearl = Parameter(1.0e-06); |
---|
23 | sld_string = Parameter(1.0e-06); |
---|
24 | sld_solv = Parameter(6.3e-06); |
---|
25 | background = Parameter(0.0); |
---|
26 | |
---|
27 | } |
---|
28 | |
---|
29 | /** |
---|
30 | * Function to evaluate 1D PearlNecklaceModel function |
---|
31 | * @param q: q-value |
---|
32 | * @return: function value |
---|
33 | */ |
---|
34 | double PearlNecklaceModel :: operator()(double q) { |
---|
35 | double dp[9]; |
---|
36 | // Fill parameter array for IGOR library |
---|
37 | // Add the background after averaging |
---|
38 | dp[0] = scale(); |
---|
39 | dp[1] = radius(); |
---|
40 | dp[2] = edge_separation(); |
---|
41 | dp[3] = thick_string(); |
---|
42 | dp[4] = num_pearls(); |
---|
43 | dp[5] = sld_pearl(); |
---|
44 | dp[6] = sld_string(); |
---|
45 | dp[7] = sld_solv(); |
---|
46 | dp[8] = 0.0; |
---|
47 | double pi = 4.0*atan(1.0); |
---|
48 | // No polydispersion supported in this model. |
---|
49 | // Get the dispersion points for the radius |
---|
50 | vector<WeightPoint> weights_radius; |
---|
51 | radius.get_weights(weights_radius); |
---|
52 | vector<WeightPoint> weights_edge_separation; |
---|
53 | edge_separation.get_weights(weights_edge_separation); |
---|
54 | // Perform the computation, with all weight points |
---|
55 | double sum = 0.0; |
---|
56 | double norm = 0.0; |
---|
57 | double vol = 0.0; |
---|
58 | double string_vol = 0.0; |
---|
59 | double pearl_vol = 0.0; |
---|
60 | double tot_vol = 0.0; |
---|
61 | // Loop over core weight points |
---|
62 | for(int i=0; i<weights_radius.size(); i++) { |
---|
63 | dp[1] = weights_radius[i].value; |
---|
64 | // Loop over thick_inter0 weight points |
---|
65 | for(int j=0; j<weights_edge_separation.size(); j++) { |
---|
66 | dp[2] = weights_edge_separation[j].value; |
---|
67 | pearl_vol = 4.0 /3.0 * pi * pow(dp[1], 3); |
---|
68 | string_vol =dp[2] * pi * pow((dp[3] / 2.0), 2); |
---|
69 | tot_vol = (dp[4] - 1.0) * string_vol; |
---|
70 | tot_vol += dp[4] * pearl_vol; |
---|
71 | //Un-normalize Sphere by volume |
---|
72 | sum += weights_radius[i].weight * weights_edge_separation[j].weight |
---|
73 | * pearl_necklace_kernel(dp,q) * tot_vol; |
---|
74 | //Find average volume |
---|
75 | vol += weights_radius[i].weight * weights_edge_separation[j].weight |
---|
76 | * tot_vol; |
---|
77 | norm += weights_radius[i].weight * weights_edge_separation[j].weight; |
---|
78 | } |
---|
79 | } |
---|
80 | |
---|
81 | if (vol != 0.0 && norm != 0.0) { |
---|
82 | //Re-normalize by avg volume |
---|
83 | sum = sum/(vol/norm);} |
---|
84 | |
---|
85 | return sum/norm + background(); |
---|
86 | } |
---|
87 | |
---|
88 | /** |
---|
89 | * Function to evaluate 2D PearlNecklaceModel function |
---|
90 | * @param q_x: value of Q along x |
---|
91 | * @param q_y: value of Q along y |
---|
92 | * @return: function value |
---|
93 | */ |
---|
94 | double PearlNecklaceModel :: operator()(double qx, double qy) { |
---|
95 | double q = sqrt(qx*qx + qy*qy); |
---|
96 | return (*this).operator()(q); |
---|
97 | } |
---|
98 | |
---|
99 | /** |
---|
100 | * Function to evaluate PearlNecklaceModel function |
---|
101 | * @param pars: parameters of the PearlNecklaceModel |
---|
102 | * @param q: q-value |
---|
103 | * @param phi: angle phi |
---|
104 | * @return: function value |
---|
105 | */ |
---|
106 | double PearlNecklaceModel :: evaluate_rphi(double q, double phi) { |
---|
107 | return (*this).operator()(q); |
---|
108 | } |
---|
109 | |
---|
110 | /** |
---|
111 | * Function to calculate TOTAL radius |
---|
112 | * Todo: decide whether or not we keep this calculation |
---|
113 | * @return: effective radius value |
---|
114 | */ |
---|
115 | // No polydispersion supported in this model. |
---|
116 | // Calculate max radius assumming max_radius = effective radius |
---|
117 | // Note that this max radius is not affected by sld of layer, sld of interface, or |
---|
118 | // sld of solvent. |
---|
119 | double PearlNecklaceModel :: calculate_ER() { |
---|
120 | PeralNecklaceParameters dp; |
---|
121 | |
---|
122 | dp.scale = scale(); |
---|
123 | dp.radius = radius(); |
---|
124 | dp.edge_separation = edge_separation(); |
---|
125 | dp.thick_string = thick_string(); |
---|
126 | dp.num_pearls = num_pearls(); |
---|
127 | |
---|
128 | double rad_out = 0.0; |
---|
129 | // Perform the computation, with all weight points |
---|
130 | double sum = 0.0; |
---|
131 | double norm = 0.0; |
---|
132 | double pi = 4.0*atan(1.0); |
---|
133 | // No polydispersion supported in this model. |
---|
134 | // Get the dispersion points for the radius |
---|
135 | vector<WeightPoint> weights_radius; |
---|
136 | radius.get_weights(weights_radius); |
---|
137 | vector<WeightPoint> weights_edge_separation; |
---|
138 | edge_separation.get_weights(weights_edge_separation); |
---|
139 | // Perform the computation, with all weight points |
---|
140 | double string_vol = 0.0; |
---|
141 | double pearl_vol = 0.0; |
---|
142 | double tot_vol = 0.0; |
---|
143 | // Loop over core weight points |
---|
144 | for(int i=0; i<weights_radius.size(); i++) { |
---|
145 | dp.radius = weights_radius[i].value; |
---|
146 | // Loop over thick_inter0 weight points |
---|
147 | for(int j=0; j<weights_edge_separation.size(); j++) { |
---|
148 | dp.edge_separation = weights_edge_separation[j].value; |
---|
149 | pearl_vol = 4.0 /3.0 * pi * pow(dp.radius , 3); |
---|
150 | string_vol =dp.edge_separation * pi * pow((dp.thick_string / 2.0), 2); |
---|
151 | tot_vol = (dp.num_pearls - 1.0) * string_vol; |
---|
152 | tot_vol += dp.num_pearls * pearl_vol; |
---|
153 | //Find volume |
---|
154 | // This may be a too much approximation |
---|
155 | //Todo: decided whether or not we keep this calculation |
---|
156 | sum += weights_radius[i].weight * weights_edge_separation[j].weight |
---|
157 | * pow(3.0*tot_vol/4.0/pi,0.333333); |
---|
158 | norm += weights_radius[i].weight * weights_edge_separation[j].weight; |
---|
159 | } |
---|
160 | } |
---|
161 | |
---|
162 | if (norm != 0){ |
---|
163 | //return the averaged value |
---|
164 | rad_out = sum/norm;} |
---|
165 | else{ |
---|
166 | //return normal value |
---|
167 | pearl_vol = 4.0 /3.0 * pi * pow(dp.radius , 3); |
---|
168 | string_vol =dp.edge_separation * pi * pow((dp.thick_string / 2.0), 2); |
---|
169 | tot_vol = (dp.num_pearls - 1.0) * string_vol; |
---|
170 | tot_vol += dp.num_pearls * pearl_vol; |
---|
171 | |
---|
172 | rad_out = pow((3.0*tot_vol/4.0/pi), 0.33333); |
---|
173 | } |
---|
174 | |
---|
175 | return rad_out; |
---|
176 | |
---|
177 | } |
---|