1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "models.hh" |
---|
24 | #include "parameters.hh" |
---|
25 | #include <stdio.h> |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libSphere.h" |
---|
30 | #include "multishell.h" |
---|
31 | } |
---|
32 | |
---|
33 | MultiShellModel :: MultiShellModel() { |
---|
34 | scale = Parameter(1.0); |
---|
35 | core_radius = Parameter(60.0, true); |
---|
36 | core_radius.set_min(0.0); |
---|
37 | s_thickness = Parameter(10.0, true); |
---|
38 | s_thickness.set_min(0.0); |
---|
39 | w_thickness = Parameter(10.0, true); |
---|
40 | w_thickness.set_min(0.0); |
---|
41 | core_sld = Parameter(6.4e-6); |
---|
42 | shell_sld = Parameter(4.0e-7); |
---|
43 | n_pairs = Parameter(2); |
---|
44 | background = Parameter(0.0); |
---|
45 | } |
---|
46 | |
---|
47 | /** |
---|
48 | * Function to evaluate 1D scattering function |
---|
49 | * The NIST IGOR library is used for the actual calculation. |
---|
50 | * @param q: q-value |
---|
51 | * @return: function value |
---|
52 | */ |
---|
53 | double MultiShellModel :: operator()(double q) { |
---|
54 | double dp[8]; |
---|
55 | |
---|
56 | // Fill parameter array for IGOR library |
---|
57 | // Add the background after averaging |
---|
58 | dp[0] = scale(); |
---|
59 | dp[1] = core_radius(); |
---|
60 | dp[2] = s_thickness(); |
---|
61 | dp[3] = w_thickness(); |
---|
62 | dp[4] = core_sld(); |
---|
63 | dp[5] = shell_sld(); |
---|
64 | dp[6] = n_pairs(); |
---|
65 | dp[7] = 0.0; |
---|
66 | |
---|
67 | // Get the dispersion points for the core radius |
---|
68 | vector<WeightPoint> weights_core_radius; |
---|
69 | core_radius.get_weights(weights_core_radius); |
---|
70 | |
---|
71 | // Get the dispersion points for the s_thickness |
---|
72 | vector<WeightPoint> weights_s_thickness; |
---|
73 | s_thickness.get_weights(weights_s_thickness); |
---|
74 | |
---|
75 | // Get the dispersion points for the w_thickness |
---|
76 | vector<WeightPoint> weights_w_thickness; |
---|
77 | w_thickness.get_weights(weights_w_thickness); |
---|
78 | |
---|
79 | // Perform the computation, with all weight points |
---|
80 | double sum = 0.0; |
---|
81 | double norm = 0.0; |
---|
82 | double vol = 0.0; |
---|
83 | |
---|
84 | // Loop over radius weight points |
---|
85 | for(int i=0; i< (int)weights_core_radius.size(); i++) { |
---|
86 | dp[1] = weights_core_radius[i].value; |
---|
87 | for(int j=0; j< (int)weights_s_thickness.size(); j++){ |
---|
88 | dp[2] = weights_s_thickness[j].value; |
---|
89 | for(int k=0; k< (int)weights_w_thickness.size(); k++){ |
---|
90 | dp[3] = weights_w_thickness[k].value; |
---|
91 | //Un-normalize SphereForm by volume |
---|
92 | sum += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
93 | *weights_w_thickness[k].weight* MultiShell(dp, q) |
---|
94 | *pow(weights_core_radius[i].value+dp[6]*weights_s_thickness[j].value+(dp[6]-1)*weights_w_thickness[k].value,3); |
---|
95 | //Find average volume |
---|
96 | vol += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
97 | *weights_w_thickness[k].weight |
---|
98 | *pow(weights_core_radius[i].value+dp[6]*weights_s_thickness[j].value+(dp[6]-1)*weights_w_thickness[k].value,3); |
---|
99 | norm += weights_core_radius[i].weight*weights_s_thickness[j].weight |
---|
100 | *weights_w_thickness[k].weight; |
---|
101 | } |
---|
102 | } |
---|
103 | } |
---|
104 | if (vol != 0.0 && norm != 0.0) { |
---|
105 | //Re-normalize by avg volume |
---|
106 | sum = sum/(vol/norm);} |
---|
107 | return sum/norm + background(); |
---|
108 | } |
---|
109 | |
---|
110 | /** |
---|
111 | * Function to evaluate 2D scattering function |
---|
112 | * @param q_x: value of Q along x |
---|
113 | * @param q_y: value of Q along y |
---|
114 | * @return: function value |
---|
115 | */ |
---|
116 | double MultiShellModel :: operator()(double qx, double qy) { |
---|
117 | double q = sqrt(qx*qx + qy*qy); |
---|
118 | return (*this).operator()(q); |
---|
119 | } |
---|
120 | |
---|
121 | /** |
---|
122 | * Function to evaluate 2D scattering function |
---|
123 | * @param pars: parameters of the multishell |
---|
124 | * @param q: q-value |
---|
125 | * @param phi: angle phi |
---|
126 | * @return: function value |
---|
127 | */ |
---|
128 | double MultiShellModel :: evaluate_rphi(double q, double phi) { |
---|
129 | return (*this).operator()(q); |
---|
130 | } |
---|
131 | /** |
---|
132 | * Function to calculate effective radius |
---|
133 | * @return: effective radius value |
---|
134 | */ |
---|
135 | double MultiShellModel :: calculate_ER() { |
---|
136 | MultiShellParameters dp; |
---|
137 | |
---|
138 | dp.core_radius = core_radius(); |
---|
139 | dp.s_thickness = s_thickness(); |
---|
140 | dp.w_thickness = w_thickness(); |
---|
141 | dp.n_pairs = n_pairs(); |
---|
142 | |
---|
143 | double rad_out = 0.0; |
---|
144 | |
---|
145 | // Perform the computation, with all weight points |
---|
146 | double sum = 0.0; |
---|
147 | double norm = 0.0; |
---|
148 | if (dp.n_pairs <= 0.0 ){ |
---|
149 | dp.n_pairs = 0.0; |
---|
150 | } |
---|
151 | |
---|
152 | // Get the dispersion points for the core radius |
---|
153 | vector<WeightPoint> weights_core_radius; |
---|
154 | core_radius.get_weights(weights_core_radius); |
---|
155 | |
---|
156 | // Get the dispersion points for the s_thickness |
---|
157 | vector<WeightPoint> weights_s_thickness; |
---|
158 | s_thickness.get_weights(weights_s_thickness); |
---|
159 | |
---|
160 | // Get the dispersion points for the w_thickness |
---|
161 | vector<WeightPoint> weights_w_thickness; |
---|
162 | w_thickness.get_weights(weights_w_thickness); |
---|
163 | |
---|
164 | // Loop over major shell weight points |
---|
165 | for(int i=0; i< (int)weights_s_thickness.size(); i++) { |
---|
166 | dp.s_thickness = weights_s_thickness[i].value; |
---|
167 | for(int j=0; j< (int)weights_w_thickness.size(); j++) { |
---|
168 | dp.w_thickness = weights_w_thickness[j].value; |
---|
169 | for(int k=0; k< (int)weights_core_radius.size(); k++) { |
---|
170 | dp.core_radius = weights_core_radius[k].value; |
---|
171 | sum += weights_s_thickness[i].weight*weights_w_thickness[j].weight |
---|
172 | * weights_core_radius[k].weight*(dp.core_radius+dp.n_pairs*dp.s_thickness+(dp.n_pairs-1.0)*dp.w_thickness); |
---|
173 | norm += weights_s_thickness[i].weight*weights_w_thickness[j].weight* weights_core_radius[k].weight; |
---|
174 | } |
---|
175 | } |
---|
176 | } |
---|
177 | if (norm != 0){ |
---|
178 | //return the averaged value |
---|
179 | rad_out = sum/norm;} |
---|
180 | else{ |
---|
181 | //return normal value |
---|
182 | rad_out = (dp.core_radius+dp.n_pairs*dp.s_thickness+(dp.n_pairs-1.0)*dp.w_thickness);} |
---|
183 | |
---|
184 | return rad_out; |
---|
185 | } |
---|