[27fea3f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
[5eb9154] | 31 | #include "libStructureFactor.h" |
---|
[27fea3f] | 32 | #include "hollow_cylinder.h" |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | HollowCylinderModel :: HollowCylinderModel() { |
---|
| 36 | scale = Parameter(1.0); |
---|
| 37 | core_radius = Parameter(20.0, true); |
---|
| 38 | core_radius.set_min(0.0); |
---|
[e2afadf] | 39 | radius = Parameter(30.0, true); |
---|
| 40 | radius.set_min(0.0); |
---|
[27fea3f] | 41 | length = Parameter(400.0, true); |
---|
| 42 | length.set_min(0.0); |
---|
[f10063e] | 43 | sldCyl = Parameter(6.3e-6); |
---|
| 44 | sldSolv = Parameter(1.0e-6); |
---|
[27fea3f] | 45 | background = Parameter(0.0); |
---|
| 46 | axis_theta = Parameter(0.0, true); |
---|
| 47 | axis_phi = Parameter(0.0, true); |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | * Function to evaluate 1D scattering function |
---|
| 52 | * The NIST IGOR library is used for the actual calculation. |
---|
| 53 | * @param q: q-value |
---|
| 54 | * @return: function value |
---|
| 55 | */ |
---|
| 56 | double HollowCylinderModel :: operator()(double q) { |
---|
[f10063e] | 57 | double dp[7]; |
---|
[27fea3f] | 58 | |
---|
| 59 | dp[0] = scale(); |
---|
| 60 | dp[1] = core_radius(); |
---|
[e2afadf] | 61 | dp[2] = radius(); |
---|
[27fea3f] | 62 | dp[3] = length(); |
---|
[f10063e] | 63 | dp[4] = sldCyl(); |
---|
| 64 | dp[5] = sldSolv(); |
---|
| 65 | dp[6] = 0.0; |
---|
[27fea3f] | 66 | |
---|
| 67 | // Get the dispersion points for the core radius |
---|
| 68 | vector<WeightPoint> weights_core_radius; |
---|
| 69 | core_radius.get_weights(weights_core_radius); |
---|
| 70 | |
---|
| 71 | // Get the dispersion points for the shell radius |
---|
[e2afadf] | 72 | vector<WeightPoint> weights_radius; |
---|
| 73 | radius.get_weights(weights_radius); |
---|
[27fea3f] | 74 | |
---|
| 75 | // Get the dispersion points for the length |
---|
| 76 | vector<WeightPoint> weights_length; |
---|
| 77 | length.get_weights(weights_length); |
---|
| 78 | |
---|
| 79 | // Perform the computation, with all weight points |
---|
| 80 | double sum = 0.0; |
---|
| 81 | double norm = 0.0; |
---|
[c451be9] | 82 | double vol = 0.0; |
---|
[27fea3f] | 83 | |
---|
| 84 | // Loop over core radius weight points |
---|
| 85 | for(int i=0; i< (int)weights_core_radius.size(); i++) { |
---|
| 86 | dp[1] = weights_core_radius[i].value; |
---|
| 87 | |
---|
| 88 | // Loop over length weight points |
---|
| 89 | for(int j=0; j< (int)weights_length.size(); j++) { |
---|
| 90 | dp[3] = weights_length[j].value; |
---|
| 91 | |
---|
| 92 | // Loop over shell radius weight points |
---|
[e2afadf] | 93 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 94 | dp[2] = weights_radius[k].value; |
---|
[c451be9] | 95 | //Un-normalize by volume |
---|
[27fea3f] | 96 | sum += weights_core_radius[i].weight |
---|
| 97 | * weights_length[j].weight |
---|
[e2afadf] | 98 | * weights_radius[k].weight |
---|
[c451be9] | 99 | * HollowCylinder(dp, q) |
---|
| 100 | * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 101 | * weights_length[j].value; |
---|
| 102 | //Find average volume |
---|
| 103 | vol += weights_core_radius[i].weight |
---|
| 104 | * weights_length[j].weight |
---|
| 105 | * weights_radius[k].weight |
---|
| 106 | * (pow(weights_radius[k].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 107 | * weights_length[j].value; |
---|
| 108 | |
---|
[27fea3f] | 109 | norm += weights_core_radius[i].weight |
---|
[c451be9] | 110 | * weights_length[j].weight |
---|
| 111 | * weights_radius[k].weight; |
---|
[27fea3f] | 112 | } |
---|
| 113 | } |
---|
| 114 | } |
---|
[c451be9] | 115 | if (vol != 0.0 && norm != 0.0) { |
---|
| 116 | //Re-normalize by avg volume |
---|
[2339249f] | 117 | sum = sum/(vol/norm);} |
---|
[c451be9] | 118 | |
---|
[27fea3f] | 119 | return sum/norm + background(); |
---|
| 120 | } |
---|
| 121 | |
---|
| 122 | /** |
---|
| 123 | * Function to evaluate 2D scattering function |
---|
| 124 | * @param q_x: value of Q along x |
---|
| 125 | * @param q_y: value of Q along y |
---|
| 126 | * @return: function value |
---|
| 127 | */ |
---|
| 128 | double HollowCylinderModel :: operator()(double qx, double qy) { |
---|
| 129 | HollowCylinderParameters dp; |
---|
| 130 | // Fill parameter array |
---|
| 131 | dp.scale = scale(); |
---|
| 132 | dp.core_radius = core_radius(); |
---|
[e2afadf] | 133 | dp.radius = radius(); |
---|
[27fea3f] | 134 | dp.length = length(); |
---|
[f10063e] | 135 | dp.sldCyl = sldCyl(); |
---|
| 136 | dp.sldSolv = sldSolv(); |
---|
[9188cc1] | 137 | dp.background = 0.0; |
---|
[27fea3f] | 138 | dp.axis_theta = axis_theta(); |
---|
| 139 | dp.axis_phi = axis_phi(); |
---|
| 140 | |
---|
| 141 | // Get the dispersion points for the core radius |
---|
| 142 | vector<WeightPoint> weights_core_radius; |
---|
| 143 | core_radius.get_weights(weights_core_radius); |
---|
| 144 | |
---|
| 145 | // Get the dispersion points for the shell radius |
---|
[e2afadf] | 146 | vector<WeightPoint> weights_radius; |
---|
| 147 | radius.get_weights(weights_radius); |
---|
[27fea3f] | 148 | |
---|
| 149 | // Get the dispersion points for the length |
---|
| 150 | vector<WeightPoint> weights_length; |
---|
| 151 | length.get_weights(weights_length); |
---|
| 152 | |
---|
| 153 | // Get angular averaging for theta |
---|
| 154 | vector<WeightPoint> weights_theta; |
---|
| 155 | axis_theta.get_weights(weights_theta); |
---|
| 156 | |
---|
| 157 | // Get angular averaging for phi |
---|
| 158 | vector<WeightPoint> weights_phi; |
---|
| 159 | axis_phi.get_weights(weights_phi); |
---|
| 160 | |
---|
| 161 | // Perform the computation, with all weight points |
---|
| 162 | double sum = 0.0; |
---|
| 163 | double norm = 0.0; |
---|
[c451be9] | 164 | double norm_vol = 0.0; |
---|
| 165 | double vol = 0.0; |
---|
[27fea3f] | 166 | |
---|
| 167 | // Loop over core radius weight points |
---|
| 168 | for(int i=0; i<(int)weights_core_radius.size(); i++) { |
---|
| 169 | dp.core_radius = weights_core_radius[i].value; |
---|
| 170 | |
---|
| 171 | |
---|
| 172 | // Loop over length weight points |
---|
| 173 | for(int j=0; j<(int)weights_length.size(); j++) { |
---|
| 174 | dp.length = weights_length[j].value; |
---|
| 175 | |
---|
| 176 | // Loop over shell radius weight points |
---|
[e2afadf] | 177 | for(int m=0; m< (int)weights_radius.size(); m++) { |
---|
| 178 | dp.radius = weights_radius[m].value; |
---|
[27fea3f] | 179 | |
---|
| 180 | // Average over theta distribution |
---|
| 181 | for(int k=0; k< (int)weights_theta.size(); k++) { |
---|
| 182 | dp.axis_theta = weights_theta[k].value; |
---|
| 183 | |
---|
| 184 | // Average over phi distribution |
---|
| 185 | for(int l=0; l< (int)weights_phi.size(); l++) { |
---|
| 186 | dp.axis_phi = weights_phi[l].value; |
---|
[c451be9] | 187 | //Un-normalize by volume |
---|
[27fea3f] | 188 | double _ptvalue = weights_core_radius[i].weight |
---|
| 189 | * weights_length[j].weight |
---|
[e2afadf] | 190 | * weights_radius[m].weight |
---|
[27fea3f] | 191 | * weights_theta[k].weight |
---|
| 192 | * weights_phi[l].weight |
---|
[c451be9] | 193 | * hollow_cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 194 | * (pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 195 | * weights_length[j].value; |
---|
[27fea3f] | 196 | if (weights_theta.size()>1) { |
---|
| 197 | _ptvalue *= sin(weights_theta[k].value); |
---|
| 198 | } |
---|
| 199 | sum += _ptvalue; |
---|
[c451be9] | 200 | //Find average volume |
---|
| 201 | vol += weights_core_radius[i].weight |
---|
| 202 | * weights_length[j].weight |
---|
| 203 | * weights_radius[k].weight |
---|
| 204 | * (pow(weights_radius[m].value,2)-pow(weights_core_radius[i].value,2)) |
---|
| 205 | * weights_length[j].value; |
---|
| 206 | //Find norm for volume |
---|
| 207 | norm_vol += weights_core_radius[i].weight |
---|
| 208 | * weights_length[j].weight |
---|
| 209 | * weights_radius[m].weight; |
---|
[27fea3f] | 210 | |
---|
| 211 | norm += weights_core_radius[i].weight |
---|
| 212 | * weights_length[j].weight |
---|
[e2afadf] | 213 | * weights_radius[m].weight |
---|
[27fea3f] | 214 | * weights_theta[k].weight |
---|
| 215 | * weights_phi[l].weight; |
---|
| 216 | |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | // Averaging in theta needs an extra normalization |
---|
| 223 | // factor to account for the sin(theta) term in the |
---|
| 224 | // integration (see documentation). |
---|
| 225 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
[c451be9] | 226 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 227 | //Re-normalize by avg volume |
---|
[2339249f] | 228 | sum = sum/(vol/norm_vol);} |
---|
[27fea3f] | 229 | return sum/norm + background(); |
---|
| 230 | } |
---|
| 231 | |
---|
| 232 | /** |
---|
| 233 | * Function to evaluate 2D scattering function |
---|
| 234 | * @param pars: parameters of the cylinder |
---|
| 235 | * @param q: q-value |
---|
| 236 | * @param phi: angle phi |
---|
| 237 | * @return: function value |
---|
| 238 | */ |
---|
| 239 | double HollowCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 240 | double qx = q*cos(phi); |
---|
| 241 | double qy = q*sin(phi); |
---|
| 242 | return (*this).operator()(qx, qy); |
---|
| 243 | } |
---|
[5eb9154] | 244 | /** |
---|
| 245 | * Function to calculate effective radius |
---|
| 246 | * @return: effective radius value |
---|
| 247 | */ |
---|
| 248 | double HollowCylinderModel :: calculate_ER() { |
---|
| 249 | HollowCylinderParameters dp; |
---|
| 250 | |
---|
| 251 | dp.radius = radius(); |
---|
| 252 | dp.length = length(); |
---|
| 253 | |
---|
| 254 | double rad_out = 0.0; |
---|
| 255 | |
---|
| 256 | // Perform the computation, with all weight points |
---|
| 257 | double sum = 0.0; |
---|
| 258 | double norm = 0.0; |
---|
| 259 | |
---|
| 260 | // Get the dispersion points for the major shell |
---|
| 261 | vector<WeightPoint> weights_length; |
---|
| 262 | length.get_weights(weights_length); |
---|
| 263 | |
---|
| 264 | // Get the dispersion points for the minor shell |
---|
| 265 | vector<WeightPoint> weights_radius ; |
---|
| 266 | radius.get_weights(weights_radius); |
---|
| 267 | |
---|
| 268 | // Loop over major shell weight points |
---|
| 269 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 270 | dp.length = weights_length[i].value; |
---|
| 271 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 272 | dp.radius = weights_radius[k].value; |
---|
| 273 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 274 | sum +=weights_length[i].weight |
---|
| 275 | * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; |
---|
| 276 | norm += weights_length[i].weight* weights_radius[k].weight; |
---|
| 277 | } |
---|
| 278 | } |
---|
| 279 | if (norm != 0){ |
---|
| 280 | //return the averaged value |
---|
| 281 | rad_out = sum/norm;} |
---|
| 282 | else{ |
---|
| 283 | //return normal value |
---|
| 284 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 285 | rad_out = DiamCyl(dp.length,dp.radius)/2.0;} |
---|
| 286 | |
---|
| 287 | return rad_out; |
---|
| 288 | } |
---|