1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | |
---|
16 | #include <math.h> |
---|
17 | #include "models.hh" |
---|
18 | #include "parameters.hh" |
---|
19 | #include <stdio.h> |
---|
20 | using namespace std; |
---|
21 | |
---|
22 | extern "C" { |
---|
23 | #include "fuzzysphere.h" |
---|
24 | } |
---|
25 | |
---|
26 | FuzzySphereModel :: FuzzySphereModel() { |
---|
27 | scale = Parameter(0.01); |
---|
28 | radius = Parameter(60.0, true); |
---|
29 | radius.set_min(0.0); |
---|
30 | fuzziness = Parameter(10.0); |
---|
31 | fuzziness.set_min(0.0); |
---|
32 | sldSph = Parameter(1.0e-6); |
---|
33 | sldSolv = Parameter(3.0e-6); |
---|
34 | background = Parameter(0.001); |
---|
35 | } |
---|
36 | |
---|
37 | /** |
---|
38 | * Function to evaluate 1D scattering function |
---|
39 | * The NIST IGOR library is used for the actual calculation. |
---|
40 | * @param q: q-value |
---|
41 | * @return: function value |
---|
42 | */ |
---|
43 | double FuzzySphereModel :: operator()(double q) { |
---|
44 | double dp[6]; |
---|
45 | |
---|
46 | // Fill parameter array for IGOR library |
---|
47 | // Add the background after averaging |
---|
48 | dp[0] = scale(); |
---|
49 | dp[1] = radius(); |
---|
50 | dp[2] = fuzziness(); |
---|
51 | dp[3] = sldSph(); |
---|
52 | dp[4] = sldSolv(); |
---|
53 | dp[5] = 0.0; |
---|
54 | |
---|
55 | // Get the dispersion points for the radius |
---|
56 | vector<WeightPoint> weights_radius; |
---|
57 | radius.get_weights(weights_radius); |
---|
58 | |
---|
59 | // Get the dispersion points for the fuzziness |
---|
60 | vector<WeightPoint> weights_fuzziness; |
---|
61 | fuzziness.get_weights(weights_fuzziness); |
---|
62 | |
---|
63 | // Perform the computation, with all weight points |
---|
64 | double sum = 0.0; |
---|
65 | double norm = 0.0; |
---|
66 | double norm_vol = 0.0; |
---|
67 | double vol = 0.0; |
---|
68 | |
---|
69 | // Loop over radius weight points |
---|
70 | for(int i=0; i<weights_radius.size(); i++) { |
---|
71 | dp[1] = weights_radius[i].value; |
---|
72 | // Loop over fuzziness weight points |
---|
73 | for(int j=0; j<weights_fuzziness.size(); j++) { |
---|
74 | dp[2] = weights_fuzziness[j].value; |
---|
75 | |
---|
76 | //Un-normalize SphereForm by volume |
---|
77 | sum += weights_radius[i].weight * weights_fuzziness[j].weight |
---|
78 | * fuzzysphere_kernel(dp, q) * pow(weights_radius[i].value,3); |
---|
79 | //Find average volume : Note the fuzziness has no contribution to the volume |
---|
80 | vol += weights_radius[i].weight |
---|
81 | * pow(weights_radius[i].value,3); |
---|
82 | |
---|
83 | norm += weights_radius[i].weight * weights_fuzziness[j].weight; |
---|
84 | norm_vol += weights_radius[i].weight; |
---|
85 | } |
---|
86 | } |
---|
87 | |
---|
88 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
89 | //Re-normalize by avg volume |
---|
90 | sum = sum/(vol/norm_vol);} |
---|
91 | return sum/norm + background(); |
---|
92 | } |
---|
93 | |
---|
94 | /** |
---|
95 | * Function to evaluate 2D scattering function |
---|
96 | * @param q_x: value of Q along x |
---|
97 | * @param q_y: value of Q along y |
---|
98 | * @return: function value |
---|
99 | */ |
---|
100 | double FuzzySphereModel :: operator()(double qx, double qy) { |
---|
101 | double q = sqrt(qx*qx + qy*qy); |
---|
102 | return (*this).operator()(q); |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * Function to evaluate 2D scattering function |
---|
107 | * @param pars: parameters of the sphere |
---|
108 | * @param q: q-value |
---|
109 | * @param phi: angle phi |
---|
110 | * @return: function value |
---|
111 | */ |
---|
112 | double FuzzySphereModel :: evaluate_rphi(double q, double phi) { |
---|
113 | return (*this).operator()(q); |
---|
114 | } |
---|
115 | |
---|
116 | /** |
---|
117 | * Function to calculate effective radius |
---|
118 | * @return: effective radius value |
---|
119 | */ |
---|
120 | double FuzzySphereModel :: calculate_ER() { |
---|
121 | FuzzySphereParameters dp; |
---|
122 | dp.scale = scale(); |
---|
123 | dp.radius = radius(); |
---|
124 | dp.fuzziness = fuzziness(); |
---|
125 | dp.sldSph = sldSph(); |
---|
126 | dp.sldSolv = sldSolv(); |
---|
127 | dp.background = background(); |
---|
128 | double rad_out = 0.0; |
---|
129 | |
---|
130 | // Perform the computation, with all weight points |
---|
131 | double sum = 0.0; |
---|
132 | double norm = 0.0; |
---|
133 | |
---|
134 | // Get the dispersion points for the radius |
---|
135 | // No need to consider the fuzziness. |
---|
136 | vector<WeightPoint> weights_radius; |
---|
137 | radius.get_weights(weights_radius); |
---|
138 | // Loop over radius weight points to average the radius value |
---|
139 | for(int i=0; i<weights_radius.size(); i++) { |
---|
140 | sum += weights_radius[i].weight |
---|
141 | * weights_radius[i].value; |
---|
142 | norm += weights_radius[i].weight; |
---|
143 | } |
---|
144 | if (norm != 0){ |
---|
145 | //return the averaged value |
---|
146 | rad_out = sum/norm;} |
---|
147 | else{ |
---|
148 | //return normal value |
---|
149 | rad_out = radius();} |
---|
150 | |
---|
151 | return rad_out; |
---|
152 | } |
---|