[c724ccd] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | |
---|
| 16 | #include <math.h> |
---|
| 17 | #include "models.hh" |
---|
| 18 | #include "parameters.hh" |
---|
| 19 | #include <stdio.h> |
---|
| 20 | using namespace std; |
---|
| 21 | |
---|
| 22 | extern "C" { |
---|
| 23 | #include "fuzzysphere.h" |
---|
| 24 | } |
---|
| 25 | |
---|
| 26 | FuzzySphereModel :: FuzzySphereModel() { |
---|
| 27 | scale = Parameter(0.01); |
---|
| 28 | radius = Parameter(60.0, true); |
---|
| 29 | radius.set_min(0.0); |
---|
| 30 | fuzziness = Parameter(10.0); |
---|
| 31 | fuzziness.set_min(0.0); |
---|
| 32 | sldSph = Parameter(1.0e-6); |
---|
| 33 | sldSolv = Parameter(3.0e-6); |
---|
| 34 | background = Parameter(0.001); |
---|
| 35 | } |
---|
| 36 | |
---|
| 37 | /** |
---|
| 38 | * Function to evaluate 1D scattering function |
---|
| 39 | * The NIST IGOR library is used for the actual calculation. |
---|
| 40 | * @param q: q-value |
---|
| 41 | * @return: function value |
---|
| 42 | */ |
---|
| 43 | double FuzzySphereModel :: operator()(double q) { |
---|
| 44 | double dp[6]; |
---|
| 45 | |
---|
| 46 | // Fill parameter array for IGOR library |
---|
| 47 | // Add the background after averaging |
---|
| 48 | dp[0] = scale(); |
---|
| 49 | dp[1] = radius(); |
---|
| 50 | dp[2] = fuzziness(); |
---|
| 51 | dp[3] = sldSph(); |
---|
| 52 | dp[4] = sldSolv(); |
---|
| 53 | dp[5] = 0.0; |
---|
| 54 | |
---|
| 55 | // Get the dispersion points for the radius |
---|
| 56 | vector<WeightPoint> weights_radius; |
---|
| 57 | radius.get_weights(weights_radius); |
---|
| 58 | |
---|
| 59 | // Get the dispersion points for the fuzziness |
---|
| 60 | vector<WeightPoint> weights_fuzziness; |
---|
| 61 | fuzziness.get_weights(weights_fuzziness); |
---|
| 62 | |
---|
| 63 | // Perform the computation, with all weight points |
---|
| 64 | double sum = 0.0; |
---|
| 65 | double norm = 0.0; |
---|
| 66 | double norm_vol = 0.0; |
---|
| 67 | double vol = 0.0; |
---|
| 68 | |
---|
| 69 | // Loop over radius weight points |
---|
| 70 | for(int i=0; i<weights_radius.size(); i++) { |
---|
| 71 | dp[1] = weights_radius[i].value; |
---|
| 72 | // Loop over fuzziness weight points |
---|
| 73 | for(int j=0; j<weights_fuzziness.size(); j++) { |
---|
| 74 | dp[2] = weights_fuzziness[j].value; |
---|
| 75 | |
---|
| 76 | //Un-normalize SphereForm by volume |
---|
| 77 | sum += weights_radius[i].weight * weights_fuzziness[j].weight |
---|
| 78 | * fuzzysphere_kernel(dp, q) * pow(weights_radius[i].value,3); |
---|
| 79 | //Find average volume : Note the fuzziness has no contribution to the volume |
---|
| 80 | vol += weights_radius[i].weight |
---|
| 81 | * pow(weights_radius[i].value,3); |
---|
| 82 | |
---|
| 83 | norm += weights_radius[i].weight * weights_fuzziness[j].weight; |
---|
| 84 | norm_vol += weights_radius[i].weight; |
---|
| 85 | } |
---|
| 86 | } |
---|
| 87 | |
---|
| 88 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 89 | //Re-normalize by avg volume |
---|
| 90 | sum = sum/(vol/norm_vol);} |
---|
| 91 | return sum/norm + background(); |
---|
| 92 | } |
---|
| 93 | |
---|
| 94 | /** |
---|
| 95 | * Function to evaluate 2D scattering function |
---|
| 96 | * @param q_x: value of Q along x |
---|
| 97 | * @param q_y: value of Q along y |
---|
| 98 | * @return: function value |
---|
| 99 | */ |
---|
| 100 | double FuzzySphereModel :: operator()(double qx, double qy) { |
---|
| 101 | double q = sqrt(qx*qx + qy*qy); |
---|
| 102 | return (*this).operator()(q); |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Function to evaluate 2D scattering function |
---|
| 107 | * @param pars: parameters of the sphere |
---|
| 108 | * @param q: q-value |
---|
| 109 | * @param phi: angle phi |
---|
| 110 | * @return: function value |
---|
| 111 | */ |
---|
| 112 | double FuzzySphereModel :: evaluate_rphi(double q, double phi) { |
---|
| 113 | return (*this).operator()(q); |
---|
| 114 | } |
---|
| 115 | |
---|
| 116 | /** |
---|
| 117 | * Function to calculate effective radius |
---|
| 118 | * @return: effective radius value |
---|
| 119 | */ |
---|
| 120 | double FuzzySphereModel :: calculate_ER() { |
---|
| 121 | FuzzySphereParameters dp; |
---|
| 122 | dp.scale = scale(); |
---|
| 123 | dp.radius = radius(); |
---|
| 124 | dp.fuzziness = fuzziness(); |
---|
| 125 | dp.sldSph = sldSph(); |
---|
| 126 | dp.sldSolv = sldSolv(); |
---|
| 127 | dp.background = background(); |
---|
| 128 | double rad_out = 0.0; |
---|
| 129 | |
---|
| 130 | // Perform the computation, with all weight points |
---|
| 131 | double sum = 0.0; |
---|
| 132 | double norm = 0.0; |
---|
| 133 | |
---|
| 134 | // Get the dispersion points for the radius |
---|
| 135 | // No need to consider the fuzziness. |
---|
| 136 | vector<WeightPoint> weights_radius; |
---|
| 137 | radius.get_weights(weights_radius); |
---|
| 138 | // Loop over radius weight points to average the radius value |
---|
| 139 | for(int i=0; i<weights_radius.size(); i++) { |
---|
| 140 | sum += weights_radius[i].weight |
---|
| 141 | * weights_radius[i].value; |
---|
| 142 | norm += weights_radius[i].weight; |
---|
| 143 | } |
---|
| 144 | if (norm != 0){ |
---|
| 145 | //return the averaged value |
---|
| 146 | rad_out = sum/norm;} |
---|
| 147 | else{ |
---|
| 148 | //return normal value |
---|
| 149 | rad_out = radius();} |
---|
| 150 | |
---|
| 151 | return rad_out; |
---|
| 152 | } |
---|