source: sasview/sansmodels/src/sans/models/c_models/flexiblecylinder.cpp @ f82fe3c

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since f82fe3c was c724ccd, checked in by Jae Cho <jhjcho@…>, 15 years ago

More models added and correction of Wrappergenerator on model parameter value precision

  • Property mode set to 100644
File size: 5.1 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 *      TODO: refactor so that we pull in the old sansmodels.c_extensions
21 *      TODO: add 2d
22 */
23
24#include <math.h>
25#include "models.hh"
26#include "parameters.hh"
27#include <stdio.h>
28using namespace std;
29
30extern "C" {
31        #include "libCylinder.h"
32        #include "libStructureFactor.h"
33        #include "flexible_cylinder.h"
34}
35
36FlexibleCylinderModel :: FlexibleCylinderModel() {
37        scale      = Parameter(1.0);
38        length     = Parameter(1000.0, true);
39        length.set_min(0.0);
40        kuhn_length = Parameter(100.0, true);
41        kuhn_length.set_min(0.0);
42        radius  = Parameter(20.0, true);
43        radius.set_min(0.0);
44        sldCyl   = Parameter(1.0e-6);
45        sldSolv   = Parameter(6.3e-6);
46        background = Parameter(0.0001);
47}
48
49/**
50 * Function to evaluate 1D scattering function
51 * The NIST IGOR library is used for the actual calculation.
52 * @param q: q-value
53 * @return: function value
54 */
55double FlexibleCylinderModel :: operator()(double q) {
56        double dp[7];
57
58        // Fill parameter array for IGOR library
59        // Add the background after averaging
60        dp[0] = scale();
61        dp[1] = length();
62        dp[2] = kuhn_length();
63        dp[3] = radius();
64        dp[4] = sldCyl();
65        dp[5] = sldSolv();
66        dp[6] = 0.0;
67
68        // Get the dispersion points for the length
69        vector<WeightPoint> weights_len;
70        length.get_weights(weights_len);
71
72        // Get the dispersion points for the kuhn_length
73        vector<WeightPoint> weights_kuhn;
74        kuhn_length.get_weights(weights_kuhn);
75
76        // Get the dispersion points for the radius
77        vector<WeightPoint> weights_rad;
78        radius.get_weights(weights_rad);
79
80        // Perform the computation, with all weight points
81        double sum = 0.0;
82        double norm = 0.0;
83        double vol = 0.0;
84
85        // Loop over semi axis A weight points
86        for(int i=0; i< (int)weights_len.size(); i++) {
87                dp[1] = weights_len[i].value;
88
89                // Loop over semi axis B weight points
90                for(int j=0; j< (int)weights_kuhn.size(); j++) {
91                        dp[2] = weights_kuhn[j].value;
92
93                        // Loop over semi axis C weight points
94                        for(int k=0; k< (int)weights_rad.size(); k++) {
95                                dp[3] = weights_rad[k].value;
96                                //Un-normalize by volume
97                                sum += weights_len[i].weight
98                                        * weights_kuhn[j].weight*weights_rad[k].weight * FlexExclVolCyl(dp, q)
99                                        * pow(weights_rad[k].value,2.0)*weights_len[i].value;
100                                //Find average volume
101                                vol += weights_rad[k].weight
102                                        * weights_len[i].weight
103                                        * weights_kuhn[j].weight
104                                        *pow(weights_rad[k].value,2.0)*weights_len[i].value;
105                                norm += weights_len[i].weight
106                                        * weights_kuhn[j].weight*weights_rad[k].weight;
107                        }
108                }
109        }
110        if (vol != 0.0 && norm != 0.0) {
111                //Re-normalize by avg volume
112                sum = sum/(vol/norm);}
113
114        return sum/norm + background();
115}
116
117/**
118 * Function to evaluate 2D scattering function
119 * @param q_x: value of Q along x
120 * @param q_y: value of Q along y
121 * @return: function value
122 */
123double FlexibleCylinderModel :: operator()(double qx, double qy) {
124        double q = sqrt(qx*qx + qy*qy);
125        return (*this).operator()(q);
126}
127
128/**
129 * Function to evaluate 2D scattering function
130 * @param pars: parameters of the triaxial ellipsoid
131 * @param q: q-value
132 * @param phi: angle phi
133 * @return: function value
134 */
135double FlexibleCylinderModel :: evaluate_rphi(double q, double phi) {
136        //double qx = q*cos(phi);
137        //double qy = q*sin(phi);
138        return (*this).operator()(q);
139}
140/**
141 * Function to calculate effective radius
142 * @return: effective radius value
143 */
144double FlexibleCylinderModel :: calculate_ER() {
145        FlexibleCylinderParameters dp;
146
147        dp.radius  = radius();
148        dp.length     = length();
149
150        double rad_out = 0.0;
151
152        // Perform the computation, with all weight points
153        double sum = 0.0;
154        double norm = 0.0;
155
156        // Get the dispersion points for the major shell
157        vector<WeightPoint> weights_length;
158        length.get_weights(weights_length);
159
160        // Get the dispersion points for the minor shell
161        vector<WeightPoint> weights_radius ;
162        radius.get_weights(weights_radius);
163
164        // Loop over major shell weight points
165        for(int i=0; i< (int)weights_length.size(); i++) {
166                dp.length = weights_length[i].value;
167                for(int k=0; k< (int)weights_radius.size(); k++) {
168                        dp.radius = weights_radius[k].value;
169                        //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER.
170                        sum +=weights_length[i].weight
171                                * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0;
172                        norm += weights_length[i].weight* weights_radius[k].weight;
173                }
174        }
175        if (norm != 0){
176                //return the averaged value
177                rad_out =  sum/norm;}
178        else{
179                //return normal value
180                //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER.
181                rad_out = DiamCyl(dp.length,dp.radius)/2.0;}
182
183        return rad_out;
184}
Note: See TracBrowser for help on using the repository browser.