1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | */ |
---|
21 | |
---|
22 | #include <math.h> |
---|
23 | #include "models.hh" |
---|
24 | #include "parameters.hh" |
---|
25 | #include <stdio.h> |
---|
26 | using namespace std; |
---|
27 | |
---|
28 | extern "C" { |
---|
29 | #include "libCylinder.h" |
---|
30 | #include "libStructureFactor.h" |
---|
31 | #include "flexcyl_ellipX.h" |
---|
32 | } |
---|
33 | |
---|
34 | FlexCylEllipXModel :: FlexCylEllipXModel() { |
---|
35 | scale = Parameter(1.0); |
---|
36 | length = Parameter(1000.0, true); |
---|
37 | length.set_min(0.0); |
---|
38 | kuhn_length = Parameter(100.0, true); |
---|
39 | kuhn_length.set_min(0.0); |
---|
40 | radius = Parameter(20.0, true); |
---|
41 | radius.set_min(0.0); |
---|
42 | axis_ratio = Parameter(1.5); |
---|
43 | axis_ratio.set_min(0.0); |
---|
44 | sldCyl = Parameter(1.0e-6); |
---|
45 | sldSolv = Parameter(6.3e-6); |
---|
46 | background = Parameter(0.0001); |
---|
47 | } |
---|
48 | |
---|
49 | /** |
---|
50 | * Function to evaluate 1D scattering function |
---|
51 | * The NIST IGOR library is used for the actual calculation. |
---|
52 | * @param q: q-value |
---|
53 | * @return: function value |
---|
54 | */ |
---|
55 | double FlexCylEllipXModel :: operator()(double q) { |
---|
56 | double dp[8]; |
---|
57 | |
---|
58 | // Fill parameter array for IGOR library |
---|
59 | // Add the background after averaging |
---|
60 | dp[0] = scale(); |
---|
61 | dp[1] = length(); |
---|
62 | dp[2] = kuhn_length(); |
---|
63 | dp[3] = radius(); |
---|
64 | dp[4] = axis_ratio(); |
---|
65 | dp[5] = sldCyl(); |
---|
66 | dp[6] = sldSolv(); |
---|
67 | dp[7] = 0.0; |
---|
68 | |
---|
69 | // Get the dispersion points for the length |
---|
70 | vector<WeightPoint> weights_len; |
---|
71 | length.get_weights(weights_len); |
---|
72 | |
---|
73 | // Get the dispersion points for the kuhn_length |
---|
74 | vector<WeightPoint> weights_kuhn; |
---|
75 | kuhn_length.get_weights(weights_kuhn); |
---|
76 | |
---|
77 | // Get the dispersion points for the radius |
---|
78 | vector<WeightPoint> weights_rad; |
---|
79 | radius.get_weights(weights_rad); |
---|
80 | |
---|
81 | // Get the dispersion points for the axis_ratio |
---|
82 | vector<WeightPoint> weights_ratio; |
---|
83 | axis_ratio.get_weights(weights_ratio); |
---|
84 | |
---|
85 | // Perform the computation, with all weight points |
---|
86 | double sum = 0.0; |
---|
87 | double norm = 0.0; |
---|
88 | double vol = 0.0; |
---|
89 | |
---|
90 | // Loop over length weight points |
---|
91 | for(int i=0; i< (int)weights_len.size(); i++) { |
---|
92 | dp[1] = weights_len[i].value; |
---|
93 | |
---|
94 | // Loop over kuhn_length weight points |
---|
95 | for(int j=0; j< (int)weights_kuhn.size(); j++) { |
---|
96 | dp[2] = weights_kuhn[j].value; |
---|
97 | |
---|
98 | // Loop over radius weight points |
---|
99 | for(int k=0; k< (int)weights_rad.size(); k++) { |
---|
100 | dp[3] = weights_rad[k].value; |
---|
101 | // Loop over axis_ratio weight points |
---|
102 | for(int l=0; l< (int)weights_ratio.size(); l++) { |
---|
103 | dp[4] = weights_ratio[l].value; |
---|
104 | |
---|
105 | //Un-normalize by volume |
---|
106 | sum += weights_len[i].weight * weights_kuhn[j].weight*weights_rad[k].weight |
---|
107 | * weights_ratio[l].weight * FlexCyl_Ellip(dp, q) |
---|
108 | * (pow(weights_rad[k].value,2.0) * weights_ratio[l].value * weights_len[i].value); |
---|
109 | //Find weighted volume |
---|
110 | vol += weights_rad[k].weight * weights_kuhn[j].weight |
---|
111 | * weights_len[i].weight * weights_ratio[l].weight |
---|
112 | *pow(weights_rad[k].value,2.0)* weights_ratio[l].weight*weights_len[i].value; |
---|
113 | norm += weights_len[i].weight * weights_kuhn[j].weight |
---|
114 | *weights_rad[k].weight* weights_ratio[l].weight; |
---|
115 | } |
---|
116 | } |
---|
117 | } |
---|
118 | } |
---|
119 | if (vol != 0.0 && norm != 0.0) { |
---|
120 | //Re-normalize by avg volume |
---|
121 | sum = sum/(vol/norm);} |
---|
122 | |
---|
123 | return sum/norm + background(); |
---|
124 | } |
---|
125 | |
---|
126 | /** |
---|
127 | * Function to evaluate 2D scattering function |
---|
128 | * @param q_x: value of Q along x |
---|
129 | * @param q_y: value of Q along y |
---|
130 | * @return: function value |
---|
131 | */ |
---|
132 | double FlexCylEllipXModel :: operator()(double qx, double qy) { |
---|
133 | double q = sqrt(qx*qx + qy*qy); |
---|
134 | return (*this).operator()(q); |
---|
135 | } |
---|
136 | |
---|
137 | /** |
---|
138 | * Function to evaluate 2D scattering function |
---|
139 | * @param pars: parameters of the triaxial ellipsoid |
---|
140 | * @param q: q-value |
---|
141 | * @param phi: angle phi |
---|
142 | * @return: function value |
---|
143 | */ |
---|
144 | double FlexCylEllipXModel :: evaluate_rphi(double q, double phi) { |
---|
145 | //double qx = q*cos(phi); |
---|
146 | //double qy = q*sin(phi); |
---|
147 | return (*this).operator()(q); |
---|
148 | } |
---|
149 | /** |
---|
150 | * Function to calculate effective radius |
---|
151 | * @return: effective radius value |
---|
152 | */ |
---|
153 | double FlexCylEllipXModel :: calculate_ER() { |
---|
154 | FlexCyl_EllipXParameters dp; |
---|
155 | |
---|
156 | dp.radius = radius(); |
---|
157 | dp.length = length(); |
---|
158 | dp.axis_ratio = axis_ratio(); |
---|
159 | |
---|
160 | double rad_out = 0.0; |
---|
161 | double suf_rad = sqrt(dp.radius*dp.radius*dp.axis_ratio ); |
---|
162 | // Perform the computation, with all weight points |
---|
163 | double sum = 0.0; |
---|
164 | double norm = 0.0; |
---|
165 | |
---|
166 | // Get the dispersion points for the total length |
---|
167 | vector<WeightPoint> weights_length; |
---|
168 | length.get_weights(weights_length); |
---|
169 | |
---|
170 | // Get the dispersion points for minor radius |
---|
171 | vector<WeightPoint> weights_radius ; |
---|
172 | radius.get_weights(weights_radius); |
---|
173 | |
---|
174 | // Get the dispersion points for axis ratio = major_radius/minor_radius |
---|
175 | vector<WeightPoint> weights_ratio ; |
---|
176 | axis_ratio.get_weights(weights_ratio); |
---|
177 | |
---|
178 | // Loop over major shell weight points |
---|
179 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
180 | dp.length = weights_length[i].value; |
---|
181 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
182 | dp.radius = weights_radius[k].value; |
---|
183 | // Loop over axis_ratio weight points |
---|
184 | for(int l=0; l< (int)weights_ratio.size(); l++) { |
---|
185 | dp.axis_ratio = weights_ratio[l].value; |
---|
186 | suf_rad = sqrt(dp.radius * dp.radius * dp.axis_ratio); |
---|
187 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
188 | sum +=weights_length[i].weight * weights_radius[k].weight |
---|
189 | * weights_ratio[l].weight *DiamCyl(dp.length,suf_rad)/2.0; |
---|
190 | norm += weights_length[i].weight* weights_radius[k].weight* weights_ratio[l].weight; |
---|
191 | } |
---|
192 | } |
---|
193 | } |
---|
194 | if (norm != 0){ |
---|
195 | //return the averaged value |
---|
196 | rad_out = sum/norm;} |
---|
197 | else{ |
---|
198 | //return normal value |
---|
199 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
200 | rad_out = DiamCyl(dp.length,suf_rad)/2.0;} |
---|
201 | |
---|
202 | return rad_out; |
---|
203 | } |
---|