[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
| 31 | #include "elliptical_cylinder.h" |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | EllipticalCylinderModel :: EllipticalCylinderModel() { |
---|
| 35 | scale = Parameter(1.0); |
---|
| 36 | r_minor = Parameter(20.0, true); |
---|
| 37 | r_minor.set_min(0.0); |
---|
| 38 | r_ratio = Parameter(1.5, true); |
---|
| 39 | r_ratio.set_min(0.0); |
---|
| 40 | length = Parameter(400.0, true); |
---|
| 41 | length.set_min(0.0); |
---|
| 42 | contrast = Parameter(3.e-6); |
---|
| 43 | background = Parameter(0.0); |
---|
| 44 | cyl_theta = Parameter(1.57, true); |
---|
| 45 | cyl_phi = Parameter(0.0, true); |
---|
| 46 | cyl_psi = Parameter(0.0, true); |
---|
| 47 | } |
---|
| 48 | |
---|
| 49 | /** |
---|
| 50 | * Function to evaluate 1D scattering function |
---|
| 51 | * The NIST IGOR library is used for the actual calculation. |
---|
| 52 | * @param q: q-value |
---|
| 53 | * @return: function value |
---|
| 54 | */ |
---|
| 55 | double EllipticalCylinderModel :: operator()(double q) { |
---|
| 56 | double dp[6]; |
---|
| 57 | |
---|
| 58 | dp[0] = scale(); |
---|
| 59 | dp[1] = r_minor(); |
---|
| 60 | dp[2] = r_ratio(); |
---|
| 61 | dp[3] = length(); |
---|
| 62 | dp[4] = contrast(); |
---|
| 63 | dp[5] = 0.0; |
---|
| 64 | |
---|
| 65 | // Get the dispersion points for the r_minor |
---|
| 66 | vector<WeightPoint> weights_rad; |
---|
| 67 | r_minor.get_weights(weights_rad); |
---|
| 68 | |
---|
| 69 | // Get the dispersion points for the r_ratio |
---|
| 70 | vector<WeightPoint> weights_rat; |
---|
| 71 | r_ratio.get_weights(weights_rat); |
---|
| 72 | |
---|
| 73 | // Get the dispersion points for the length |
---|
| 74 | vector<WeightPoint> weights_len; |
---|
| 75 | length.get_weights(weights_len); |
---|
| 76 | |
---|
| 77 | // Perform the computation, with all weight points |
---|
| 78 | double sum = 0.0; |
---|
| 79 | double norm = 0.0; |
---|
| 80 | |
---|
| 81 | // Loop over r_minor weight points |
---|
| 82 | for(int i=0; i<weights_rad.size(); i++) { |
---|
| 83 | dp[1] = weights_rad[i].value; |
---|
| 84 | |
---|
| 85 | // Loop over r_ratio weight points |
---|
| 86 | for(int j=0; j<weights_rat.size(); j++) { |
---|
| 87 | dp[2] = weights_rat[j].value; |
---|
| 88 | |
---|
| 89 | // Loop over length weight points |
---|
| 90 | for(int k=0; k<weights_len.size(); k++) { |
---|
| 91 | dp[3] = weights_len[k].value; |
---|
| 92 | |
---|
| 93 | sum += weights_rad[i].weight |
---|
| 94 | * weights_len[k].weight |
---|
| 95 | * weights_rat[j].weight |
---|
| 96 | * EllipCyl20(dp, q); |
---|
| 97 | norm += weights_rad[i].weight |
---|
| 98 | * weights_len[k].weight |
---|
| 99 | * weights_rat[j].weight; |
---|
| 100 | } |
---|
| 101 | } |
---|
| 102 | } |
---|
| 103 | return sum/norm + background(); |
---|
| 104 | } |
---|
| 105 | |
---|
| 106 | /** |
---|
| 107 | * Function to evaluate 2D scattering function |
---|
| 108 | * @param q_x: value of Q along x |
---|
| 109 | * @param q_y: value of Q along y |
---|
| 110 | * @return: function value |
---|
| 111 | */ |
---|
| 112 | double EllipticalCylinderModel :: operator()(double qx, double qy) { |
---|
| 113 | EllipticalCylinderParameters dp; |
---|
| 114 | // Fill parameter array |
---|
| 115 | dp.scale = scale(); |
---|
| 116 | dp.r_minor = r_minor(); |
---|
| 117 | dp.r_ratio = r_ratio(); |
---|
| 118 | dp.length = length(); |
---|
| 119 | dp.contrast = contrast(); |
---|
| 120 | dp.background = 0.0; |
---|
| 121 | dp.cyl_theta = cyl_theta(); |
---|
| 122 | dp.cyl_phi = cyl_phi(); |
---|
| 123 | dp.cyl_psi = cyl_psi(); |
---|
| 124 | |
---|
| 125 | // Get the dispersion points for the r_minor |
---|
| 126 | vector<WeightPoint> weights_rad; |
---|
| 127 | r_minor.get_weights(weights_rad); |
---|
| 128 | |
---|
| 129 | // Get the dispersion points for the r_ratio |
---|
| 130 | vector<WeightPoint> weights_rat; |
---|
| 131 | r_ratio.get_weights(weights_rat); |
---|
| 132 | |
---|
| 133 | // Get the dispersion points for the length |
---|
| 134 | vector<WeightPoint> weights_len; |
---|
| 135 | length.get_weights(weights_len); |
---|
| 136 | |
---|
| 137 | // Get angular averaging for theta |
---|
| 138 | vector<WeightPoint> weights_theta; |
---|
| 139 | cyl_theta.get_weights(weights_theta); |
---|
| 140 | |
---|
| 141 | // Get angular averaging for phi |
---|
| 142 | vector<WeightPoint> weights_phi; |
---|
| 143 | cyl_phi.get_weights(weights_phi); |
---|
| 144 | |
---|
| 145 | // Get angular averaging for psi |
---|
| 146 | vector<WeightPoint> weights_psi; |
---|
| 147 | cyl_psi.get_weights(weights_psi); |
---|
| 148 | |
---|
| 149 | // Perform the computation, with all weight points |
---|
| 150 | double sum = 0.0; |
---|
| 151 | double norm = 0.0; |
---|
| 152 | |
---|
| 153 | // Loop over minor radius weight points |
---|
| 154 | for(int i=0; i<weights_rad.size(); i++) { |
---|
| 155 | dp.r_minor = weights_rad[i].value; |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | // Loop over length weight points |
---|
| 159 | for(int j=0; j<weights_len.size(); j++) { |
---|
| 160 | dp.length = weights_len[j].value; |
---|
| 161 | |
---|
| 162 | // Loop over r_ration weight points |
---|
| 163 | for(int m=0; m<weights_rat.size(); m++) { |
---|
| 164 | dp.r_ratio = weights_rat[m].value; |
---|
| 165 | |
---|
| 166 | // Average over theta distribution |
---|
| 167 | for(int k=0; k<weights_theta.size(); k++) { |
---|
| 168 | dp.cyl_theta = weights_theta[k].value; |
---|
| 169 | |
---|
| 170 | // Average over phi distribution |
---|
| 171 | for(int l=0; l<weights_phi.size(); l++) { |
---|
| 172 | dp.cyl_phi = weights_phi[l].value; |
---|
| 173 | |
---|
| 174 | // Average over phi distribution |
---|
| 175 | for(int o=0; o<weights_psi.size(); o++) { |
---|
| 176 | dp.cyl_psi = weights_psi[o].value; |
---|
| 177 | |
---|
| 178 | double _ptvalue = weights_rad[i].weight |
---|
| 179 | * weights_len[j].weight |
---|
| 180 | * weights_rat[m].weight |
---|
| 181 | * weights_theta[k].weight |
---|
| 182 | * weights_phi[l].weight |
---|
| 183 | * weights_psi[o].weight |
---|
| 184 | * elliptical_cylinder_analytical_2DXY(&dp, qx, qy); |
---|
| 185 | if (weights_theta.size()>1) { |
---|
| 186 | _ptvalue *= sin(weights_theta[k].value); |
---|
| 187 | } |
---|
| 188 | sum += _ptvalue; |
---|
| 189 | |
---|
| 190 | norm += weights_rad[i].weight |
---|
| 191 | * weights_len[j].weight |
---|
| 192 | * weights_rat[m].weight |
---|
| 193 | * weights_theta[k].weight |
---|
| 194 | * weights_phi[l].weight |
---|
| 195 | * weights_psi[o].weight; |
---|
| 196 | |
---|
| 197 | } |
---|
| 198 | } |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | // Averaging in theta needs an extra normalization |
---|
| 204 | // factor to account for the sin(theta) term in the |
---|
| 205 | // integration (see documentation). |
---|
| 206 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 207 | return sum/norm + background(); |
---|
| 208 | } |
---|
| 209 | |
---|
| 210 | /** |
---|
| 211 | * Function to evaluate 2D scattering function |
---|
| 212 | * @param pars: parameters of the cylinder |
---|
| 213 | * @param q: q-value |
---|
| 214 | * @param phi: angle phi |
---|
| 215 | * @return: function value |
---|
| 216 | */ |
---|
| 217 | double EllipticalCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 218 | double qx = q*cos(phi); |
---|
| 219 | double qy = q*sin(phi); |
---|
| 220 | return (*this).operator()(qx, qy); |
---|
| 221 | } |
---|