[0f5bc9f] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
[f9bf661] | 31 | #include "libStructureFactor.h" |
---|
[0f5bc9f] | 32 | #include "elliptical_cylinder.h" |
---|
| 33 | } |
---|
| 34 | |
---|
| 35 | EllipticalCylinderModel :: EllipticalCylinderModel() { |
---|
| 36 | scale = Parameter(1.0); |
---|
| 37 | r_minor = Parameter(20.0, true); |
---|
| 38 | r_minor.set_min(0.0); |
---|
| 39 | r_ratio = Parameter(1.5, true); |
---|
| 40 | r_ratio.set_min(0.0); |
---|
| 41 | length = Parameter(400.0, true); |
---|
| 42 | length.set_min(0.0); |
---|
| 43 | contrast = Parameter(3.e-6); |
---|
| 44 | background = Parameter(0.0); |
---|
| 45 | cyl_theta = Parameter(1.57, true); |
---|
| 46 | cyl_phi = Parameter(0.0, true); |
---|
| 47 | cyl_psi = Parameter(0.0, true); |
---|
| 48 | } |
---|
| 49 | |
---|
| 50 | /** |
---|
| 51 | * Function to evaluate 1D scattering function |
---|
| 52 | * The NIST IGOR library is used for the actual calculation. |
---|
| 53 | * @param q: q-value |
---|
| 54 | * @return: function value |
---|
| 55 | */ |
---|
| 56 | double EllipticalCylinderModel :: operator()(double q) { |
---|
| 57 | double dp[6]; |
---|
| 58 | |
---|
| 59 | dp[0] = scale(); |
---|
| 60 | dp[1] = r_minor(); |
---|
| 61 | dp[2] = r_ratio(); |
---|
| 62 | dp[3] = length(); |
---|
| 63 | dp[4] = contrast(); |
---|
| 64 | dp[5] = 0.0; |
---|
| 65 | |
---|
| 66 | // Get the dispersion points for the r_minor |
---|
| 67 | vector<WeightPoint> weights_rad; |
---|
| 68 | r_minor.get_weights(weights_rad); |
---|
| 69 | |
---|
| 70 | // Get the dispersion points for the r_ratio |
---|
| 71 | vector<WeightPoint> weights_rat; |
---|
| 72 | r_ratio.get_weights(weights_rat); |
---|
| 73 | |
---|
| 74 | // Get the dispersion points for the length |
---|
| 75 | vector<WeightPoint> weights_len; |
---|
| 76 | length.get_weights(weights_len); |
---|
| 77 | |
---|
| 78 | // Perform the computation, with all weight points |
---|
| 79 | double sum = 0.0; |
---|
| 80 | double norm = 0.0; |
---|
| 81 | |
---|
| 82 | // Loop over r_minor weight points |
---|
| 83 | for(int i=0; i<weights_rad.size(); i++) { |
---|
| 84 | dp[1] = weights_rad[i].value; |
---|
| 85 | |
---|
| 86 | // Loop over r_ratio weight points |
---|
| 87 | for(int j=0; j<weights_rat.size(); j++) { |
---|
| 88 | dp[2] = weights_rat[j].value; |
---|
| 89 | |
---|
| 90 | // Loop over length weight points |
---|
| 91 | for(int k=0; k<weights_len.size(); k++) { |
---|
| 92 | dp[3] = weights_len[k].value; |
---|
| 93 | |
---|
| 94 | sum += weights_rad[i].weight |
---|
| 95 | * weights_len[k].weight |
---|
| 96 | * weights_rat[j].weight |
---|
| 97 | * EllipCyl20(dp, q); |
---|
| 98 | norm += weights_rad[i].weight |
---|
| 99 | * weights_len[k].weight |
---|
| 100 | * weights_rat[j].weight; |
---|
| 101 | } |
---|
| 102 | } |
---|
| 103 | } |
---|
| 104 | return sum/norm + background(); |
---|
| 105 | } |
---|
| 106 | |
---|
| 107 | /** |
---|
| 108 | * Function to evaluate 2D scattering function |
---|
| 109 | * @param q_x: value of Q along x |
---|
| 110 | * @param q_y: value of Q along y |
---|
| 111 | * @return: function value |
---|
| 112 | */ |
---|
| 113 | double EllipticalCylinderModel :: operator()(double qx, double qy) { |
---|
| 114 | EllipticalCylinderParameters dp; |
---|
| 115 | // Fill parameter array |
---|
| 116 | dp.scale = scale(); |
---|
| 117 | dp.r_minor = r_minor(); |
---|
| 118 | dp.r_ratio = r_ratio(); |
---|
| 119 | dp.length = length(); |
---|
| 120 | dp.contrast = contrast(); |
---|
| 121 | dp.background = 0.0; |
---|
| 122 | dp.cyl_theta = cyl_theta(); |
---|
| 123 | dp.cyl_phi = cyl_phi(); |
---|
| 124 | dp.cyl_psi = cyl_psi(); |
---|
| 125 | |
---|
| 126 | // Get the dispersion points for the r_minor |
---|
| 127 | vector<WeightPoint> weights_rad; |
---|
| 128 | r_minor.get_weights(weights_rad); |
---|
| 129 | |
---|
| 130 | // Get the dispersion points for the r_ratio |
---|
| 131 | vector<WeightPoint> weights_rat; |
---|
| 132 | r_ratio.get_weights(weights_rat); |
---|
| 133 | |
---|
| 134 | // Get the dispersion points for the length |
---|
| 135 | vector<WeightPoint> weights_len; |
---|
| 136 | length.get_weights(weights_len); |
---|
| 137 | |
---|
| 138 | // Get angular averaging for theta |
---|
| 139 | vector<WeightPoint> weights_theta; |
---|
| 140 | cyl_theta.get_weights(weights_theta); |
---|
| 141 | |
---|
| 142 | // Get angular averaging for phi |
---|
| 143 | vector<WeightPoint> weights_phi; |
---|
| 144 | cyl_phi.get_weights(weights_phi); |
---|
| 145 | |
---|
| 146 | // Get angular averaging for psi |
---|
| 147 | vector<WeightPoint> weights_psi; |
---|
| 148 | cyl_psi.get_weights(weights_psi); |
---|
| 149 | |
---|
| 150 | // Perform the computation, with all weight points |
---|
| 151 | double sum = 0.0; |
---|
| 152 | double norm = 0.0; |
---|
| 153 | |
---|
| 154 | // Loop over minor radius weight points |
---|
| 155 | for(int i=0; i<weights_rad.size(); i++) { |
---|
| 156 | dp.r_minor = weights_rad[i].value; |
---|
| 157 | |
---|
| 158 | |
---|
| 159 | // Loop over length weight points |
---|
| 160 | for(int j=0; j<weights_len.size(); j++) { |
---|
| 161 | dp.length = weights_len[j].value; |
---|
| 162 | |
---|
| 163 | // Loop over r_ration weight points |
---|
| 164 | for(int m=0; m<weights_rat.size(); m++) { |
---|
| 165 | dp.r_ratio = weights_rat[m].value; |
---|
| 166 | |
---|
| 167 | // Average over theta distribution |
---|
| 168 | for(int k=0; k<weights_theta.size(); k++) { |
---|
| 169 | dp.cyl_theta = weights_theta[k].value; |
---|
| 170 | |
---|
| 171 | // Average over phi distribution |
---|
| 172 | for(int l=0; l<weights_phi.size(); l++) { |
---|
| 173 | dp.cyl_phi = weights_phi[l].value; |
---|
| 174 | |
---|
| 175 | // Average over phi distribution |
---|
| 176 | for(int o=0; o<weights_psi.size(); o++) { |
---|
| 177 | dp.cyl_psi = weights_psi[o].value; |
---|
| 178 | |
---|
| 179 | double _ptvalue = weights_rad[i].weight |
---|
| 180 | * weights_len[j].weight |
---|
| 181 | * weights_rat[m].weight |
---|
| 182 | * weights_theta[k].weight |
---|
| 183 | * weights_phi[l].weight |
---|
| 184 | * weights_psi[o].weight |
---|
| 185 | * elliptical_cylinder_analytical_2DXY(&dp, qx, qy); |
---|
| 186 | if (weights_theta.size()>1) { |
---|
| 187 | _ptvalue *= sin(weights_theta[k].value); |
---|
| 188 | } |
---|
| 189 | sum += _ptvalue; |
---|
| 190 | |
---|
| 191 | norm += weights_rad[i].weight |
---|
| 192 | * weights_len[j].weight |
---|
| 193 | * weights_rat[m].weight |
---|
| 194 | * weights_theta[k].weight |
---|
| 195 | * weights_phi[l].weight |
---|
| 196 | * weights_psi[o].weight; |
---|
| 197 | |
---|
| 198 | } |
---|
| 199 | } |
---|
| 200 | } |
---|
| 201 | } |
---|
| 202 | } |
---|
| 203 | } |
---|
| 204 | // Averaging in theta needs an extra normalization |
---|
| 205 | // factor to account for the sin(theta) term in the |
---|
| 206 | // integration (see documentation). |
---|
| 207 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 208 | return sum/norm + background(); |
---|
| 209 | } |
---|
| 210 | |
---|
| 211 | /** |
---|
| 212 | * Function to evaluate 2D scattering function |
---|
| 213 | * @param pars: parameters of the cylinder |
---|
| 214 | * @param q: q-value |
---|
| 215 | * @param phi: angle phi |
---|
| 216 | * @return: function value |
---|
| 217 | */ |
---|
| 218 | double EllipticalCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 219 | double qx = q*cos(phi); |
---|
| 220 | double qy = q*sin(phi); |
---|
| 221 | return (*this).operator()(qx, qy); |
---|
| 222 | } |
---|
[5eb9154] | 223 | /** |
---|
| 224 | * Function to calculate effective radius |
---|
| 225 | * @return: effective radius value |
---|
| 226 | */ |
---|
| 227 | double EllipticalCylinderModel :: calculate_ER() { |
---|
[f9bf661] | 228 | EllipticalCylinderParameters dp; |
---|
| 229 | dp.r_minor = r_minor(); |
---|
| 230 | dp.r_ratio = r_ratio(); |
---|
| 231 | dp.length = length(); |
---|
| 232 | double rad_out = 0.0; |
---|
| 233 | double pi = 4.0*atan(1.0); |
---|
| 234 | double suf_rad = sqrt(dp.r_minor*dp.r_minor*dp.r_ratio); |
---|
| 235 | |
---|
| 236 | // Perform the computation, with all weight points |
---|
| 237 | double sum = 0.0; |
---|
| 238 | double norm = 0.0; |
---|
| 239 | |
---|
| 240 | // Get the dispersion points for the r_minor |
---|
| 241 | vector<WeightPoint> weights_rad; |
---|
| 242 | r_minor.get_weights(weights_rad); |
---|
| 243 | |
---|
| 244 | // Get the dispersion points for the r_ratio |
---|
| 245 | vector<WeightPoint> weights_rat; |
---|
| 246 | r_ratio.get_weights(weights_rat); |
---|
| 247 | |
---|
| 248 | // Get the dispersion points for the length |
---|
| 249 | vector<WeightPoint> weights_len; |
---|
| 250 | length.get_weights(weights_len); |
---|
| 251 | |
---|
| 252 | // Loop over minor radius weight points |
---|
| 253 | for(int i=0; i<weights_rad.size(); i++) { |
---|
| 254 | dp.r_minor = weights_rad[i].value; |
---|
| 255 | |
---|
| 256 | // Loop over length weight points |
---|
| 257 | for(int j=0; j<weights_len.size(); j++) { |
---|
| 258 | dp.length = weights_len[j].value; |
---|
| 259 | |
---|
| 260 | // Loop over r_ration weight points |
---|
| 261 | for(int m=0; m<weights_rat.size(); m++) { |
---|
| 262 | dp.r_ratio = weights_rat[m].value; |
---|
| 263 | //Calculate surface averaged radius |
---|
| 264 | suf_rad = sqrt(dp.r_minor * dp.r_minor * dp.r_ratio); |
---|
| 265 | |
---|
| 266 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 267 | sum +=weights_rad[i].weight *weights_len[j].weight |
---|
| 268 | * weights_rat[m].weight*DiamCyl(dp.length, suf_rad)/2.0; |
---|
| 269 | norm += weights_rad[i].weight *weights_len[j].weight* weights_rat[m].weight; |
---|
| 270 | } |
---|
| 271 | } |
---|
| 272 | } |
---|
| 273 | if (norm != 0){ |
---|
| 274 | //return the averaged value |
---|
| 275 | rad_out = sum/norm;} |
---|
| 276 | else{ |
---|
| 277 | //return normal value |
---|
| 278 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 279 | rad_out = DiamCyl(dp.length, suf_rad)/2.0;} |
---|
| 280 | |
---|
| 281 | return rad_out; |
---|
[5eb9154] | 282 | } |
---|