1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2008, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | * |
---|
20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
21 | */ |
---|
22 | |
---|
23 | #include <math.h> |
---|
24 | #include "models.hh" |
---|
25 | #include "parameters.hh" |
---|
26 | #include <stdio.h> |
---|
27 | using namespace std; |
---|
28 | |
---|
29 | extern "C" { |
---|
30 | #include "libCylinder.h" |
---|
31 | #include "libStructureFactor.h" |
---|
32 | #include "cylinder.h" |
---|
33 | } |
---|
34 | |
---|
35 | CylinderModel :: CylinderModel() { |
---|
36 | scale = Parameter(1.0); |
---|
37 | radius = Parameter(20.0, true); |
---|
38 | radius.set_min(0.0); |
---|
39 | length = Parameter(400.0, true); |
---|
40 | length.set_min(0.0); |
---|
41 | sldCyl = Parameter(4.e-6); |
---|
42 | sldSolv = Parameter(1.e-6); |
---|
43 | background = Parameter(0.0); |
---|
44 | cyl_theta = Parameter(0.0, true); |
---|
45 | cyl_phi = Parameter(0.0, true); |
---|
46 | } |
---|
47 | |
---|
48 | /** |
---|
49 | * Function to evaluate 1D scattering function |
---|
50 | * The NIST IGOR library is used for the actual calculation. |
---|
51 | * @param q: q-value |
---|
52 | * @return: function value |
---|
53 | */ |
---|
54 | double CylinderModel :: operator()(double q) { |
---|
55 | double dp[6]; |
---|
56 | |
---|
57 | // Fill parameter array for IGOR library |
---|
58 | // Add the background after averaging |
---|
59 | dp[0] = scale(); |
---|
60 | dp[1] = radius(); |
---|
61 | dp[2] = length(); |
---|
62 | dp[3] = sldCyl(); |
---|
63 | dp[4] = sldSolv(); |
---|
64 | dp[5] = 0.0; |
---|
65 | |
---|
66 | // Get the dispersion points for the radius |
---|
67 | vector<WeightPoint> weights_rad; |
---|
68 | radius.get_weights(weights_rad); |
---|
69 | |
---|
70 | // Get the dispersion points for the length |
---|
71 | vector<WeightPoint> weights_len; |
---|
72 | length.get_weights(weights_len); |
---|
73 | |
---|
74 | // Perform the computation, with all weight points |
---|
75 | double sum = 0.0; |
---|
76 | double norm = 0.0; |
---|
77 | double vol = 0.0; |
---|
78 | |
---|
79 | // Loop over radius weight points |
---|
80 | for(int i=0; i<weights_rad.size(); i++) { |
---|
81 | dp[1] = weights_rad[i].value; |
---|
82 | |
---|
83 | // Loop over length weight points |
---|
84 | for(int j=0; j<weights_len.size(); j++) { |
---|
85 | dp[2] = weights_len[j].value; |
---|
86 | //Un-normalize by volume |
---|
87 | sum += weights_rad[i].weight |
---|
88 | * weights_len[j].weight * CylinderForm(dp, q) |
---|
89 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
90 | |
---|
91 | //Find average volume |
---|
92 | vol += weights_rad[i].weight |
---|
93 | * weights_len[j].weight *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
94 | norm += weights_rad[i].weight |
---|
95 | * weights_len[j].weight; |
---|
96 | } |
---|
97 | } |
---|
98 | if (vol != 0.0 && norm != 0.0) { |
---|
99 | //Re-normalize by avg volume |
---|
100 | sum = sum/(vol/norm);} |
---|
101 | |
---|
102 | return sum/norm + background(); |
---|
103 | } |
---|
104 | |
---|
105 | /** |
---|
106 | * Function to evaluate 2D scattering function |
---|
107 | * @param q_x: value of Q along x |
---|
108 | * @param q_y: value of Q along y |
---|
109 | * @return: function value |
---|
110 | */ |
---|
111 | double CylinderModel :: operator()(double qx, double qy) { |
---|
112 | CylinderParameters dp; |
---|
113 | // Fill parameter array |
---|
114 | dp.scale = scale(); |
---|
115 | dp.radius = radius(); |
---|
116 | dp.length = length(); |
---|
117 | dp.sldCyl = sldCyl(); |
---|
118 | dp.sldSolv = sldSolv(); |
---|
119 | dp.background = 0.0; |
---|
120 | dp.cyl_theta = cyl_theta(); |
---|
121 | dp.cyl_phi = cyl_phi(); |
---|
122 | |
---|
123 | // Get the dispersion points for the radius |
---|
124 | vector<WeightPoint> weights_rad; |
---|
125 | radius.get_weights(weights_rad); |
---|
126 | |
---|
127 | // Get the dispersion points for the length |
---|
128 | vector<WeightPoint> weights_len; |
---|
129 | length.get_weights(weights_len); |
---|
130 | |
---|
131 | // Get angular averaging for theta |
---|
132 | vector<WeightPoint> weights_theta; |
---|
133 | cyl_theta.get_weights(weights_theta); |
---|
134 | |
---|
135 | // Get angular averaging for phi |
---|
136 | vector<WeightPoint> weights_phi; |
---|
137 | cyl_phi.get_weights(weights_phi); |
---|
138 | |
---|
139 | // Perform the computation, with all weight points |
---|
140 | double sum = 0.0; |
---|
141 | double norm = 0.0; |
---|
142 | double norm_vol = 0.0; |
---|
143 | double vol = 0.0; |
---|
144 | |
---|
145 | // Loop over radius weight points |
---|
146 | for(int i=0; i<weights_rad.size(); i++) { |
---|
147 | dp.radius = weights_rad[i].value; |
---|
148 | |
---|
149 | |
---|
150 | // Loop over length weight points |
---|
151 | for(int j=0; j<weights_len.size(); j++) { |
---|
152 | dp.length = weights_len[j].value; |
---|
153 | |
---|
154 | // Average over theta distribution |
---|
155 | for(int k=0; k<weights_theta.size(); k++) { |
---|
156 | dp.cyl_theta = weights_theta[k].value; |
---|
157 | |
---|
158 | // Average over phi distribution |
---|
159 | for(int l=0; l<weights_phi.size(); l++) { |
---|
160 | dp.cyl_phi = weights_phi[l].value; |
---|
161 | //Un-normalize by volume |
---|
162 | double _ptvalue = weights_rad[i].weight |
---|
163 | * weights_len[j].weight |
---|
164 | * weights_theta[k].weight |
---|
165 | * weights_phi[l].weight |
---|
166 | * cylinder_analytical_2DXY(&dp, qx, qy) |
---|
167 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
168 | if (weights_theta.size()>1) { |
---|
169 | _ptvalue *= sin(weights_theta[k].value); |
---|
170 | } |
---|
171 | sum += _ptvalue; |
---|
172 | //Find average volume |
---|
173 | vol += weights_rad[i].weight |
---|
174 | * weights_len[j].weight |
---|
175 | * pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
176 | //Find norm for volume |
---|
177 | norm_vol += weights_rad[i].weight |
---|
178 | * weights_len[j].weight; |
---|
179 | |
---|
180 | norm += weights_rad[i].weight |
---|
181 | * weights_len[j].weight |
---|
182 | * weights_theta[k].weight |
---|
183 | * weights_phi[l].weight; |
---|
184 | |
---|
185 | } |
---|
186 | } |
---|
187 | } |
---|
188 | } |
---|
189 | // Averaging in theta needs an extra normalization |
---|
190 | // factor to account for the sin(theta) term in the |
---|
191 | // integration (see documentation). |
---|
192 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
193 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
194 | //Re-normalize by avg volume |
---|
195 | sum = sum/(vol/norm_vol);} |
---|
196 | |
---|
197 | return sum/norm + background(); |
---|
198 | } |
---|
199 | |
---|
200 | /** |
---|
201 | * Function to evaluate 2D scattering function |
---|
202 | * @param pars: parameters of the cylinder |
---|
203 | * @param q: q-value |
---|
204 | * @param phi: angle phi |
---|
205 | * @return: function value |
---|
206 | */ |
---|
207 | double CylinderModel :: evaluate_rphi(double q, double phi) { |
---|
208 | double qx = q*cos(phi); |
---|
209 | double qy = q*sin(phi); |
---|
210 | return (*this).operator()(qx, qy); |
---|
211 | } |
---|
212 | /** |
---|
213 | * Function to calculate effective radius |
---|
214 | * @return: effective radius value |
---|
215 | */ |
---|
216 | double CylinderModel :: calculate_ER() { |
---|
217 | CylinderParameters dp; |
---|
218 | |
---|
219 | dp.radius = radius(); |
---|
220 | dp.length = length(); |
---|
221 | double rad_out = 0.0; |
---|
222 | |
---|
223 | // Perform the computation, with all weight points |
---|
224 | double sum = 0.0; |
---|
225 | double norm = 0.0; |
---|
226 | |
---|
227 | // Get the dispersion points for the major shell |
---|
228 | vector<WeightPoint> weights_length; |
---|
229 | length.get_weights(weights_length); |
---|
230 | |
---|
231 | // Get the dispersion points for the minor shell |
---|
232 | vector<WeightPoint> weights_radius ; |
---|
233 | radius.get_weights(weights_radius); |
---|
234 | |
---|
235 | // Loop over major shell weight points |
---|
236 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
237 | dp.length = weights_length[i].value; |
---|
238 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
239 | dp.radius = weights_radius[k].value; |
---|
240 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
241 | sum +=weights_length[i].weight |
---|
242 | * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; |
---|
243 | norm += weights_length[i].weight* weights_radius[k].weight; |
---|
244 | } |
---|
245 | } |
---|
246 | if (norm != 0){ |
---|
247 | //return the averaged value |
---|
248 | rad_out = sum/norm;} |
---|
249 | else{ |
---|
250 | //return normal value |
---|
251 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
252 | rad_out = DiamCyl(dp.length,dp.radius)/2.0;} |
---|
253 | |
---|
254 | return rad_out; |
---|
255 | } |
---|
256 | // Testing code |
---|
257 | int main(void) |
---|
258 | { |
---|
259 | CylinderModel c = CylinderModel(); |
---|
260 | |
---|
261 | printf("Length = %g\n", c.length()); |
---|
262 | printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
263 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
264 | c.radius.dispersion = new GaussianDispersion(); |
---|
265 | c.radius.dispersion->npts = 100; |
---|
266 | c.radius.dispersion->width = 5; |
---|
267 | |
---|
268 | //c.length.dispersion = GaussianDispersion(); |
---|
269 | //c.length.dispersion.npts = 20; |
---|
270 | //c.length.dispersion.width = 65; |
---|
271 | |
---|
272 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
273 | c.scale = 10.0; |
---|
274 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
275 | printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
276 | printf("I(Q=%g, Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854)); |
---|
277 | |
---|
278 | // Average over phi at theta=90 deg |
---|
279 | c.cyl_theta = 1.57; |
---|
280 | double values_th[100]; |
---|
281 | double values[100]; |
---|
282 | double weights[100]; |
---|
283 | double pi = acos(-1.0); |
---|
284 | printf("pi=%g\n", pi); |
---|
285 | for(int i=0; i<100; i++){ |
---|
286 | values[i] = (float)i*2.0*pi/99.0; |
---|
287 | values_th[i] = (float)i*pi/99.0; |
---|
288 | weights[i] = 1.0; |
---|
289 | } |
---|
290 | //c.radius.dispersion->width = 0; |
---|
291 | c.cyl_phi.dispersion = new ArrayDispersion(); |
---|
292 | c.cyl_theta.dispersion = new ArrayDispersion(); |
---|
293 | (*c.cyl_phi.dispersion).set_weights(100, values, weights); |
---|
294 | (*c.cyl_theta.dispersion).set_weights(100, values_th, weights); |
---|
295 | |
---|
296 | double i_avg = c(0.01, 0.01); |
---|
297 | double i_1d = c(sqrt(0.0002)); |
---|
298 | |
---|
299 | printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg); |
---|
300 | printf("I(Q=%g) = %g\n", sqrt(0.0002), i_1d); |
---|
301 | printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg); |
---|
302 | |
---|
303 | |
---|
304 | return 0; |
---|
305 | } |
---|
306 | |
---|