[fca6936] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libCylinder.h" |
---|
[5eb9154] | 31 | #include "libStructureFactor.h" |
---|
[fca6936] | 32 | #include "cylinder.h" |
---|
| 33 | } |
---|
| 34 | |
---|
[af03ddd] | 35 | CylinderModel :: CylinderModel() { |
---|
[fca6936] | 36 | scale = Parameter(1.0); |
---|
| 37 | radius = Parameter(20.0, true); |
---|
| 38 | radius.set_min(0.0); |
---|
| 39 | length = Parameter(400.0, true); |
---|
| 40 | length.set_min(0.0); |
---|
[f10063e] | 41 | sldCyl = Parameter(4.e-6); |
---|
| 42 | sldSolv = Parameter(1.e-6); |
---|
[fca6936] | 43 | background = Parameter(0.0); |
---|
| 44 | cyl_theta = Parameter(0.0, true); |
---|
| 45 | cyl_phi = Parameter(0.0, true); |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | /** |
---|
| 49 | * Function to evaluate 1D scattering function |
---|
| 50 | * The NIST IGOR library is used for the actual calculation. |
---|
| 51 | * @param q: q-value |
---|
| 52 | * @return: function value |
---|
| 53 | */ |
---|
[af03ddd] | 54 | double CylinderModel :: operator()(double q) { |
---|
[f10063e] | 55 | double dp[6]; |
---|
[fca6936] | 56 | |
---|
| 57 | // Fill parameter array for IGOR library |
---|
| 58 | // Add the background after averaging |
---|
| 59 | dp[0] = scale(); |
---|
| 60 | dp[1] = radius(); |
---|
| 61 | dp[2] = length(); |
---|
[f10063e] | 62 | dp[3] = sldCyl(); |
---|
| 63 | dp[4] = sldSolv(); |
---|
| 64 | dp[5] = 0.0; |
---|
[fca6936] | 65 | |
---|
| 66 | // Get the dispersion points for the radius |
---|
| 67 | vector<WeightPoint> weights_rad; |
---|
| 68 | radius.get_weights(weights_rad); |
---|
| 69 | |
---|
| 70 | // Get the dispersion points for the length |
---|
| 71 | vector<WeightPoint> weights_len; |
---|
| 72 | length.get_weights(weights_len); |
---|
| 73 | |
---|
| 74 | // Perform the computation, with all weight points |
---|
| 75 | double sum = 0.0; |
---|
| 76 | double norm = 0.0; |
---|
[c451be9] | 77 | double vol = 0.0; |
---|
[fca6936] | 78 | |
---|
| 79 | // Loop over radius weight points |
---|
[34c2649] | 80 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[fca6936] | 81 | dp[1] = weights_rad[i].value; |
---|
| 82 | |
---|
| 83 | // Loop over length weight points |
---|
[34c2649] | 84 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
[fca6936] | 85 | dp[2] = weights_len[j].value; |
---|
[c451be9] | 86 | //Un-normalize by volume |
---|
[fca6936] | 87 | sum += weights_rad[i].weight |
---|
[c451be9] | 88 | * weights_len[j].weight * CylinderForm(dp, q) |
---|
| 89 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
| 90 | |
---|
| 91 | //Find average volume |
---|
| 92 | vol += weights_rad[i].weight |
---|
| 93 | * weights_len[j].weight *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
[fca6936] | 94 | norm += weights_rad[i].weight |
---|
| 95 | * weights_len[j].weight; |
---|
| 96 | } |
---|
| 97 | } |
---|
[c451be9] | 98 | if (vol != 0.0 && norm != 0.0) { |
---|
| 99 | //Re-normalize by avg volume |
---|
| 100 | sum = sum/(vol/norm);} |
---|
| 101 | |
---|
[fca6936] | 102 | return sum/norm + background(); |
---|
| 103 | } |
---|
| 104 | |
---|
| 105 | /** |
---|
| 106 | * Function to evaluate 2D scattering function |
---|
| 107 | * @param q_x: value of Q along x |
---|
| 108 | * @param q_y: value of Q along y |
---|
| 109 | * @return: function value |
---|
| 110 | */ |
---|
[af03ddd] | 111 | double CylinderModel :: operator()(double qx, double qy) { |
---|
[fca6936] | 112 | CylinderParameters dp; |
---|
| 113 | // Fill parameter array |
---|
| 114 | dp.scale = scale(); |
---|
| 115 | dp.radius = radius(); |
---|
| 116 | dp.length = length(); |
---|
[f10063e] | 117 | dp.sldCyl = sldCyl(); |
---|
| 118 | dp.sldSolv = sldSolv(); |
---|
[fca6936] | 119 | dp.background = 0.0; |
---|
| 120 | dp.cyl_theta = cyl_theta(); |
---|
| 121 | dp.cyl_phi = cyl_phi(); |
---|
| 122 | |
---|
| 123 | // Get the dispersion points for the radius |
---|
| 124 | vector<WeightPoint> weights_rad; |
---|
| 125 | radius.get_weights(weights_rad); |
---|
| 126 | |
---|
| 127 | // Get the dispersion points for the length |
---|
| 128 | vector<WeightPoint> weights_len; |
---|
| 129 | length.get_weights(weights_len); |
---|
| 130 | |
---|
| 131 | // Get angular averaging for theta |
---|
| 132 | vector<WeightPoint> weights_theta; |
---|
| 133 | cyl_theta.get_weights(weights_theta); |
---|
| 134 | |
---|
| 135 | // Get angular averaging for phi |
---|
| 136 | vector<WeightPoint> weights_phi; |
---|
| 137 | cyl_phi.get_weights(weights_phi); |
---|
| 138 | |
---|
| 139 | // Perform the computation, with all weight points |
---|
| 140 | double sum = 0.0; |
---|
| 141 | double norm = 0.0; |
---|
[c451be9] | 142 | double norm_vol = 0.0; |
---|
| 143 | double vol = 0.0; |
---|
[4628e31] | 144 | double pi = 4.0*atan(1.0); |
---|
[fca6936] | 145 | // Loop over radius weight points |
---|
[34c2649] | 146 | for(size_t i=0; i<weights_rad.size(); i++) { |
---|
[fca6936] | 147 | dp.radius = weights_rad[i].value; |
---|
| 148 | |
---|
| 149 | |
---|
| 150 | // Loop over length weight points |
---|
[34c2649] | 151 | for(size_t j=0; j<weights_len.size(); j++) { |
---|
[fca6936] | 152 | dp.length = weights_len[j].value; |
---|
| 153 | |
---|
| 154 | // Average over theta distribution |
---|
[34c2649] | 155 | for(size_t k=0; k<weights_theta.size(); k++) { |
---|
[fca6936] | 156 | dp.cyl_theta = weights_theta[k].value; |
---|
| 157 | |
---|
| 158 | // Average over phi distribution |
---|
[34c2649] | 159 | for(size_t l=0; l<weights_phi.size(); l++) { |
---|
[fca6936] | 160 | dp.cyl_phi = weights_phi[l].value; |
---|
[c451be9] | 161 | //Un-normalize by volume |
---|
[fca6936] | 162 | double _ptvalue = weights_rad[i].weight |
---|
| 163 | * weights_len[j].weight |
---|
| 164 | * weights_theta[k].weight |
---|
| 165 | * weights_phi[l].weight |
---|
[c451be9] | 166 | * cylinder_analytical_2DXY(&dp, qx, qy) |
---|
| 167 | *pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
[fca6936] | 168 | if (weights_theta.size()>1) { |
---|
[4628e31] | 169 | _ptvalue *= fabs(sin(weights_theta[k].value*pi/180.0)); |
---|
[fca6936] | 170 | } |
---|
| 171 | sum += _ptvalue; |
---|
[c451be9] | 172 | //Find average volume |
---|
| 173 | vol += weights_rad[i].weight |
---|
| 174 | * weights_len[j].weight |
---|
| 175 | * pow(weights_rad[i].value,2)*weights_len[j].value; |
---|
| 176 | //Find norm for volume |
---|
| 177 | norm_vol += weights_rad[i].weight |
---|
| 178 | * weights_len[j].weight; |
---|
[fca6936] | 179 | |
---|
| 180 | norm += weights_rad[i].weight |
---|
| 181 | * weights_len[j].weight |
---|
| 182 | * weights_theta[k].weight |
---|
| 183 | * weights_phi[l].weight; |
---|
| 184 | |
---|
| 185 | } |
---|
| 186 | } |
---|
| 187 | } |
---|
| 188 | } |
---|
| 189 | // Averaging in theta needs an extra normalization |
---|
| 190 | // factor to account for the sin(theta) term in the |
---|
| 191 | // integration (see documentation). |
---|
| 192 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
[c451be9] | 193 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 194 | //Re-normalize by avg volume |
---|
| 195 | sum = sum/(vol/norm_vol);} |
---|
| 196 | |
---|
[fca6936] | 197 | return sum/norm + background(); |
---|
| 198 | } |
---|
| 199 | |
---|
| 200 | /** |
---|
| 201 | * Function to evaluate 2D scattering function |
---|
| 202 | * @param pars: parameters of the cylinder |
---|
| 203 | * @param q: q-value |
---|
| 204 | * @param phi: angle phi |
---|
| 205 | * @return: function value |
---|
| 206 | */ |
---|
[af03ddd] | 207 | double CylinderModel :: evaluate_rphi(double q, double phi) { |
---|
[fca6936] | 208 | double qx = q*cos(phi); |
---|
| 209 | double qy = q*sin(phi); |
---|
| 210 | return (*this).operator()(qx, qy); |
---|
| 211 | } |
---|
[f9bf661] | 212 | /** |
---|
| 213 | * Function to calculate effective radius |
---|
| 214 | * @return: effective radius value |
---|
| 215 | */ |
---|
| 216 | double CylinderModel :: calculate_ER() { |
---|
| 217 | CylinderParameters dp; |
---|
| 218 | |
---|
| 219 | dp.radius = radius(); |
---|
| 220 | dp.length = length(); |
---|
| 221 | double rad_out = 0.0; |
---|
| 222 | |
---|
| 223 | // Perform the computation, with all weight points |
---|
| 224 | double sum = 0.0; |
---|
| 225 | double norm = 0.0; |
---|
| 226 | |
---|
| 227 | // Get the dispersion points for the major shell |
---|
| 228 | vector<WeightPoint> weights_length; |
---|
| 229 | length.get_weights(weights_length); |
---|
| 230 | |
---|
| 231 | // Get the dispersion points for the minor shell |
---|
| 232 | vector<WeightPoint> weights_radius ; |
---|
| 233 | radius.get_weights(weights_radius); |
---|
[fca6936] | 234 | |
---|
[f9bf661] | 235 | // Loop over major shell weight points |
---|
| 236 | for(int i=0; i< (int)weights_length.size(); i++) { |
---|
| 237 | dp.length = weights_length[i].value; |
---|
| 238 | for(int k=0; k< (int)weights_radius.size(); k++) { |
---|
| 239 | dp.radius = weights_radius[k].value; |
---|
| 240 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 241 | sum +=weights_length[i].weight |
---|
| 242 | * weights_radius[k].weight*DiamCyl(dp.length,dp.radius)/2.0; |
---|
| 243 | norm += weights_length[i].weight* weights_radius[k].weight; |
---|
| 244 | } |
---|
| 245 | } |
---|
| 246 | if (norm != 0){ |
---|
| 247 | //return the averaged value |
---|
| 248 | rad_out = sum/norm;} |
---|
| 249 | else{ |
---|
| 250 | //return normal value |
---|
| 251 | //Note: output of "DiamCyl(dp.length,dp.radius)" is DIAMETER. |
---|
| 252 | rad_out = DiamCyl(dp.length,dp.radius)/2.0;} |
---|
| 253 | |
---|
| 254 | return rad_out; |
---|
| 255 | } |
---|
[fca6936] | 256 | // Testing code |
---|
| 257 | int main(void) |
---|
| 258 | { |
---|
[af03ddd] | 259 | CylinderModel c = CylinderModel(); |
---|
[fca6936] | 260 | |
---|
| 261 | printf("Length = %g\n", c.length()); |
---|
[0f5bc9f] | 262 | printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
[fca6936] | 263 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 264 | c.radius.dispersion = new GaussianDispersion(); |
---|
| 265 | c.radius.dispersion->npts = 100; |
---|
| 266 | c.radius.dispersion->width = 5; |
---|
| 267 | |
---|
| 268 | //c.length.dispersion = GaussianDispersion(); |
---|
| 269 | //c.length.dispersion.npts = 20; |
---|
| 270 | //c.length.dispersion.width = 65; |
---|
| 271 | |
---|
| 272 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 273 | c.scale = 10.0; |
---|
| 274 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 275 | printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
| 276 | printf("I(Q=%g, Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854)); |
---|
| 277 | |
---|
| 278 | // Average over phi at theta=90 deg |
---|
| 279 | c.cyl_theta = 1.57; |
---|
| 280 | double values_th[100]; |
---|
| 281 | double values[100]; |
---|
| 282 | double weights[100]; |
---|
| 283 | double pi = acos(-1.0); |
---|
| 284 | printf("pi=%g\n", pi); |
---|
| 285 | for(int i=0; i<100; i++){ |
---|
| 286 | values[i] = (float)i*2.0*pi/99.0; |
---|
| 287 | values_th[i] = (float)i*pi/99.0; |
---|
| 288 | weights[i] = 1.0; |
---|
| 289 | } |
---|
| 290 | //c.radius.dispersion->width = 0; |
---|
| 291 | c.cyl_phi.dispersion = new ArrayDispersion(); |
---|
| 292 | c.cyl_theta.dispersion = new ArrayDispersion(); |
---|
| 293 | (*c.cyl_phi.dispersion).set_weights(100, values, weights); |
---|
| 294 | (*c.cyl_theta.dispersion).set_weights(100, values_th, weights); |
---|
| 295 | |
---|
| 296 | double i_avg = c(0.01, 0.01); |
---|
| 297 | double i_1d = c(sqrt(0.0002)); |
---|
| 298 | |
---|
| 299 | printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg); |
---|
| 300 | printf("I(Q=%g) = %g\n", sqrt(0.0002), i_1d); |
---|
| 301 | printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg); |
---|
| 302 | |
---|
| 303 | |
---|
| 304 | return 0; |
---|
| 305 | } |
---|
[5eb9154] | 306 | |
---|