1 | /** |
---|
2 | This software was developed by the University of Tennessee as part of the |
---|
3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
4 | project funded by the US National Science Foundation. |
---|
5 | |
---|
6 | If you use DANSE applications to do scientific research that leads to |
---|
7 | publication, we ask that you acknowledge the use of the software with the |
---|
8 | following sentence: |
---|
9 | |
---|
10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
11 | |
---|
12 | copyright 2010, University of Tennessee |
---|
13 | */ |
---|
14 | |
---|
15 | /** |
---|
16 | * Scattering model classes |
---|
17 | * The classes use the IGOR library found in |
---|
18 | * sansmodels/src/libigor |
---|
19 | */ |
---|
20 | |
---|
21 | #include <math.h> |
---|
22 | #include "models.hh" |
---|
23 | #include "parameters.hh" |
---|
24 | #include <stdio.h> |
---|
25 | using namespace std; |
---|
26 | |
---|
27 | extern "C" { |
---|
28 | #include "libCylinder.h" |
---|
29 | #include "libStructureFactor.h" |
---|
30 | #include "csparallelepiped.h" |
---|
31 | } |
---|
32 | |
---|
33 | CSParallelepipedModel :: CSParallelepipedModel() { |
---|
34 | scale = Parameter(1.0); |
---|
35 | shortA = Parameter(35.0, true); |
---|
36 | shortA.set_min(1.0); |
---|
37 | midB = Parameter(75.0, true); |
---|
38 | midB.set_min(1.0); |
---|
39 | longC = Parameter(400.0, true); |
---|
40 | longC.set_min(1.0); |
---|
41 | rimA = Parameter(10.0, true); |
---|
42 | rimB = Parameter(10.0, true); |
---|
43 | rimC = Parameter(10.0, true); |
---|
44 | sld_rimA = Parameter(2.0e-6, true); |
---|
45 | sld_rimB = Parameter(4.0e-6, true); |
---|
46 | sld_rimC = Parameter(2.0e-6, true); |
---|
47 | sld_pcore = Parameter(1.0e-6); |
---|
48 | sld_solv = Parameter(6.0e-6); |
---|
49 | background = Parameter(0.06); |
---|
50 | parallel_theta = Parameter(0.0, true); |
---|
51 | parallel_phi = Parameter(0.0, true); |
---|
52 | parallel_psi = Parameter(0.0, true); |
---|
53 | } |
---|
54 | |
---|
55 | /** |
---|
56 | * Function to evaluate 1D scattering function |
---|
57 | * The NIST IGOR library is used for the actual calculation. |
---|
58 | * @param q: q-value |
---|
59 | * @return: function value |
---|
60 | */ |
---|
61 | double CSParallelepipedModel :: operator()(double q) { |
---|
62 | double dp[13]; |
---|
63 | |
---|
64 | // Fill parameter array for IGOR library |
---|
65 | // Add the background after averaging |
---|
66 | dp[0] = scale(); |
---|
67 | dp[1] = shortA(); |
---|
68 | dp[2] = midB(); |
---|
69 | dp[3] = longC(); |
---|
70 | dp[4] = rimA(); |
---|
71 | dp[5] = rimB(); |
---|
72 | dp[6] = rimC(); |
---|
73 | dp[7] = sld_rimA(); |
---|
74 | dp[8] = sld_rimB(); |
---|
75 | dp[9] = sld_rimC(); |
---|
76 | dp[10] = sld_pcore(); |
---|
77 | dp[11] = sld_solv(); |
---|
78 | dp[12] = 0.0; |
---|
79 | |
---|
80 | // Get the dispersion points for the short_edgeA |
---|
81 | vector<WeightPoint> weights_shortA; |
---|
82 | shortA.get_weights(weights_shortA); |
---|
83 | |
---|
84 | // Get the dispersion points for the longer_edgeB |
---|
85 | vector<WeightPoint> weights_midB; |
---|
86 | midB.get_weights(weights_midB); |
---|
87 | |
---|
88 | // Get the dispersion points for the longuest_edgeC |
---|
89 | vector<WeightPoint> weights_longC; |
---|
90 | longC.get_weights(weights_longC); |
---|
91 | |
---|
92 | |
---|
93 | |
---|
94 | // Perform the computation, with all weight points |
---|
95 | double sum = 0.0; |
---|
96 | double norm = 0.0; |
---|
97 | double vol = 0.0; |
---|
98 | |
---|
99 | // Loop over short_edgeA weight points |
---|
100 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
101 | dp[1] = weights_shortA[i].value; |
---|
102 | |
---|
103 | // Loop over longer_edgeB weight points |
---|
104 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
105 | dp[2] = weights_midB[j].value; |
---|
106 | |
---|
107 | // Loop over longuest_edgeC weight points |
---|
108 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
109 | dp[3] = weights_longC[k].value; |
---|
110 | //Un-normalize by volume |
---|
111 | sum += weights_shortA[i].weight * weights_midB[j].weight |
---|
112 | * weights_longC[k].weight * CSParallelepiped(dp, q) |
---|
113 | * weights_shortA[i].value*weights_midB[j].value |
---|
114 | * weights_longC[k].value; |
---|
115 | //Find average volume |
---|
116 | vol += weights_shortA[i].weight * weights_midB[j].weight |
---|
117 | * weights_longC[k].weight |
---|
118 | * weights_shortA[i].value * weights_midB[j].value |
---|
119 | * weights_longC[k].value; |
---|
120 | |
---|
121 | norm += weights_shortA[i].weight |
---|
122 | * weights_midB[j].weight * weights_longC[k].weight; |
---|
123 | } |
---|
124 | } |
---|
125 | } |
---|
126 | if (vol != 0.0 && norm != 0.0) { |
---|
127 | //Re-normalize by avg volume |
---|
128 | sum = sum/(vol/norm);} |
---|
129 | |
---|
130 | return sum/norm + background(); |
---|
131 | } |
---|
132 | /** |
---|
133 | * Function to evaluate 2D scattering function |
---|
134 | * @param q_x: value of Q along x |
---|
135 | * @param q_y: value of Q along y |
---|
136 | * @return: function value |
---|
137 | */ |
---|
138 | double CSParallelepipedModel :: operator()(double qx, double qy) { |
---|
139 | CSParallelepipedParameters dp; |
---|
140 | // Fill parameter array |
---|
141 | dp.scale = scale(); |
---|
142 | dp.shortA = shortA(); |
---|
143 | dp.midB = midB(); |
---|
144 | dp.longC = longC(); |
---|
145 | dp.rimA = rimA(); |
---|
146 | dp.rimB = rimB(); |
---|
147 | dp.rimC = rimC(); |
---|
148 | dp.sld_rimA = sld_rimA(); |
---|
149 | dp.sld_rimB = sld_rimB(); |
---|
150 | dp.sld_rimC = sld_rimC(); |
---|
151 | dp.sld_pcore = sld_pcore(); |
---|
152 | dp.sld_solv = sld_solv(); |
---|
153 | dp.background = 0.0; |
---|
154 | //dp.background = background(); |
---|
155 | dp.parallel_theta = parallel_theta(); |
---|
156 | dp.parallel_phi = parallel_phi(); |
---|
157 | dp.parallel_psi = parallel_psi(); |
---|
158 | |
---|
159 | |
---|
160 | |
---|
161 | // Get the dispersion points for the short_edgeA |
---|
162 | vector<WeightPoint> weights_shortA; |
---|
163 | shortA.get_weights(weights_shortA); |
---|
164 | |
---|
165 | // Get the dispersion points for the longer_edgeB |
---|
166 | vector<WeightPoint> weights_midB; |
---|
167 | midB.get_weights(weights_midB); |
---|
168 | |
---|
169 | // Get the dispersion points for the longuest_edgeC |
---|
170 | vector<WeightPoint> weights_longC; |
---|
171 | longC.get_weights(weights_longC); |
---|
172 | |
---|
173 | // Get angular averaging for theta |
---|
174 | vector<WeightPoint> weights_parallel_theta; |
---|
175 | parallel_theta.get_weights(weights_parallel_theta); |
---|
176 | |
---|
177 | // Get angular averaging for phi |
---|
178 | vector<WeightPoint> weights_parallel_phi; |
---|
179 | parallel_phi.get_weights(weights_parallel_phi); |
---|
180 | |
---|
181 | // Get angular averaging for psi |
---|
182 | vector<WeightPoint> weights_parallel_psi; |
---|
183 | parallel_psi.get_weights(weights_parallel_psi); |
---|
184 | |
---|
185 | // Perform the computation, with all weight points |
---|
186 | double sum = 0.0; |
---|
187 | double norm = 0.0; |
---|
188 | double norm_vol = 0.0; |
---|
189 | double vol = 0.0; |
---|
190 | double pi = 4.0*atan(1.0); |
---|
191 | |
---|
192 | // Loop over radius weight points |
---|
193 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
194 | dp.shortA = weights_shortA[i].value; |
---|
195 | |
---|
196 | // Loop over longer_edgeB weight points |
---|
197 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
198 | dp.midB = weights_midB[j].value; |
---|
199 | |
---|
200 | // Average over longuest_edgeC distribution |
---|
201 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
202 | dp.longC = weights_longC[k].value; |
---|
203 | |
---|
204 | // Average over theta distribution |
---|
205 | for(int l=0; l< (int)weights_parallel_theta.size(); l++) { |
---|
206 | dp.parallel_theta = weights_parallel_theta[l].value; |
---|
207 | |
---|
208 | // Average over phi distribution |
---|
209 | for(int m=0; m< (int)weights_parallel_phi.size(); m++) { |
---|
210 | dp.parallel_phi = weights_parallel_phi[m].value; |
---|
211 | |
---|
212 | // Average over phi distribution |
---|
213 | for(int n=0; n< (int)weights_parallel_psi.size(); n++) { |
---|
214 | dp.parallel_psi = weights_parallel_psi[n].value; |
---|
215 | //Un-normalize by volume |
---|
216 | double _ptvalue = weights_shortA[i].weight |
---|
217 | * weights_midB[j].weight |
---|
218 | * weights_longC[k].weight |
---|
219 | * weights_parallel_theta[l].weight |
---|
220 | * weights_parallel_phi[m].weight |
---|
221 | * weights_parallel_psi[n].weight |
---|
222 | * csparallelepiped_analytical_2DXY(&dp, qx, qy) |
---|
223 | * weights_shortA[i].value*weights_midB[j].value |
---|
224 | * weights_longC[k].value; |
---|
225 | |
---|
226 | if (weights_parallel_theta.size()>1) { |
---|
227 | _ptvalue *= fabs(sin(weights_parallel_theta[l].value*pi/180.0)); |
---|
228 | } |
---|
229 | sum += _ptvalue; |
---|
230 | //Find average volume |
---|
231 | vol += weights_shortA[i].weight |
---|
232 | * weights_midB[j].weight |
---|
233 | * weights_longC[k].weight |
---|
234 | * weights_shortA[i].value*weights_midB[j].value |
---|
235 | * weights_longC[k].value; |
---|
236 | //Find norm for volume |
---|
237 | norm_vol += weights_shortA[i].weight |
---|
238 | * weights_midB[j].weight |
---|
239 | * weights_longC[k].weight; |
---|
240 | |
---|
241 | norm += weights_shortA[i].weight |
---|
242 | * weights_midB[j].weight |
---|
243 | * weights_longC[k].weight |
---|
244 | * weights_parallel_theta[l].weight |
---|
245 | * weights_parallel_phi[m].weight |
---|
246 | * weights_parallel_psi[n].weight; |
---|
247 | } |
---|
248 | } |
---|
249 | |
---|
250 | } |
---|
251 | } |
---|
252 | } |
---|
253 | } |
---|
254 | // Averaging in theta needs an extra normalization |
---|
255 | // factor to account for the sin(theta) term in the |
---|
256 | // integration (see documentation). |
---|
257 | if (weights_parallel_theta.size()>1) norm = norm / asin(1.0); |
---|
258 | |
---|
259 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
260 | //Re-normalize by avg volume |
---|
261 | sum = sum/(vol/norm_vol);} |
---|
262 | |
---|
263 | return sum/norm + background(); |
---|
264 | } |
---|
265 | |
---|
266 | |
---|
267 | /** |
---|
268 | * Function to evaluate 2D scattering function |
---|
269 | * @param pars: parameters of the cylinder |
---|
270 | * @param q: q-value |
---|
271 | * @param phi: angle phi |
---|
272 | * @return: function value |
---|
273 | */ |
---|
274 | double CSParallelepipedModel :: evaluate_rphi(double q, double phi) { |
---|
275 | double qx = q*cos(phi); |
---|
276 | double qy = q*sin(phi); |
---|
277 | return (*this).operator()(qx, qy); |
---|
278 | } |
---|
279 | /** |
---|
280 | * Function to calculate effective radius |
---|
281 | * @return: effective radius value |
---|
282 | */ |
---|
283 | double CSParallelepipedModel :: calculate_ER() { |
---|
284 | CSParallelepipedParameters dp; |
---|
285 | dp.shortA = shortA(); |
---|
286 | dp.midB = midB(); |
---|
287 | dp.longC = longC(); |
---|
288 | dp.rimA = rimA(); |
---|
289 | dp.rimB = rimB(); |
---|
290 | dp.rimC = rimC(); |
---|
291 | |
---|
292 | double rad_out = 0.0; |
---|
293 | double pi = 4.0*atan(1.0); |
---|
294 | double suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
295 | double height =(dp.longC + 2.0*dp.rimC); |
---|
296 | // Perform the computation, with all weight points |
---|
297 | double sum = 0.0; |
---|
298 | double norm = 0.0; |
---|
299 | |
---|
300 | // Get the dispersion points for the short_edgeA |
---|
301 | vector<WeightPoint> weights_shortA; |
---|
302 | shortA.get_weights(weights_shortA); |
---|
303 | |
---|
304 | // Get the dispersion points for the longer_edgeB |
---|
305 | vector<WeightPoint> weights_midB; |
---|
306 | midB.get_weights(weights_midB); |
---|
307 | |
---|
308 | // Get angular averaging for the longuest_edgeC |
---|
309 | vector<WeightPoint> weights_longC; |
---|
310 | longC.get_weights(weights_longC); |
---|
311 | |
---|
312 | // Loop over radius weight points |
---|
313 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
314 | dp.shortA = weights_shortA[i].value; |
---|
315 | |
---|
316 | // Loop over longer_edgeB weight points |
---|
317 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
318 | dp.midB = weights_midB[j].value; |
---|
319 | |
---|
320 | // Average over longuest_edgeC distribution |
---|
321 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
322 | dp.longC = weights_longC[k].value; |
---|
323 | //Calculate surface averaged radius |
---|
324 | //This is rough approximation. |
---|
325 | suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
326 | height =(dp.longC + 2.0*dp.rimC); |
---|
327 | //Note: output of "DiamCyl(dp.length,dp.radius)" is a DIAMETER. |
---|
328 | sum +=weights_shortA[i].weight* weights_midB[j].weight |
---|
329 | * weights_longC[k].weight*DiamCyl(height, suf_rad)/2.0; |
---|
330 | norm += weights_shortA[i].weight* weights_midB[j].weight*weights_longC[k].weight; |
---|
331 | } |
---|
332 | } |
---|
333 | } |
---|
334 | |
---|
335 | if (norm != 0){ |
---|
336 | //return the averaged value |
---|
337 | rad_out = sum/norm;} |
---|
338 | else{ |
---|
339 | //return normal value |
---|
340 | //Note: output of "DiamCyl(length,radius)" is DIAMETER. |
---|
341 | rad_out = DiamCyl(dp.longC, suf_rad)/2.0;} |
---|
342 | return rad_out; |
---|
343 | |
---|
344 | } |
---|