[18f2ca1] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2010, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | */ |
---|
| 20 | |
---|
| 21 | #include <math.h> |
---|
| 22 | #include "models.hh" |
---|
| 23 | #include "parameters.hh" |
---|
| 24 | #include <stdio.h> |
---|
| 25 | using namespace std; |
---|
| 26 | |
---|
| 27 | extern "C" { |
---|
| 28 | #include "libCylinder.h" |
---|
| 29 | #include "libStructureFactor.h" |
---|
| 30 | #include "csparallelepiped.h" |
---|
| 31 | } |
---|
| 32 | |
---|
| 33 | CSParallelepipedModel :: CSParallelepipedModel() { |
---|
| 34 | scale = Parameter(1.0); |
---|
| 35 | shortA = Parameter(35.0, true); |
---|
| 36 | shortA.set_min(1.0); |
---|
| 37 | midB = Parameter(75.0, true); |
---|
| 38 | midB.set_min(1.0); |
---|
| 39 | longC = Parameter(400.0, true); |
---|
| 40 | longC.set_min(1.0); |
---|
| 41 | rimA = Parameter(10.0, true); |
---|
| 42 | rimB = Parameter(10.0, true); |
---|
| 43 | rimC = Parameter(10.0, true); |
---|
| 44 | sld_rimA = Parameter(2.0e-6, true); |
---|
| 45 | sld_rimB = Parameter(4.0e-6, true); |
---|
| 46 | sld_rimC = Parameter(2.0e-6, true); |
---|
| 47 | sld_pcore = Parameter(1.0e-6); |
---|
| 48 | sld_solv = Parameter(6.0e-6); |
---|
| 49 | background = Parameter(0.06); |
---|
| 50 | parallel_theta = Parameter(0.0, true); |
---|
| 51 | parallel_phi = Parameter(0.0, true); |
---|
| 52 | parallel_psi = Parameter(0.0, true); |
---|
| 53 | } |
---|
| 54 | |
---|
| 55 | /** |
---|
| 56 | * Function to evaluate 1D scattering function |
---|
| 57 | * The NIST IGOR library is used for the actual calculation. |
---|
| 58 | * @param q: q-value |
---|
| 59 | * @return: function value |
---|
| 60 | */ |
---|
| 61 | double CSParallelepipedModel :: operator()(double q) { |
---|
| 62 | double dp[13]; |
---|
| 63 | |
---|
| 64 | // Fill parameter array for IGOR library |
---|
| 65 | // Add the background after averaging |
---|
| 66 | dp[0] = scale(); |
---|
| 67 | dp[1] = shortA(); |
---|
| 68 | dp[2] = midB(); |
---|
| 69 | dp[3] = longC(); |
---|
| 70 | dp[4] = rimA(); |
---|
| 71 | dp[5] = rimB(); |
---|
| 72 | dp[6] = rimC(); |
---|
| 73 | dp[7] = sld_rimA(); |
---|
| 74 | dp[8] = sld_rimB(); |
---|
| 75 | dp[9] = sld_rimC(); |
---|
| 76 | dp[10] = sld_pcore(); |
---|
| 77 | dp[11] = sld_solv(); |
---|
| 78 | dp[12] = 0.0; |
---|
| 79 | |
---|
| 80 | // Get the dispersion points for the short_edgeA |
---|
| 81 | vector<WeightPoint> weights_shortA; |
---|
| 82 | shortA.get_weights(weights_shortA); |
---|
| 83 | |
---|
| 84 | // Get the dispersion points for the longer_edgeB |
---|
| 85 | vector<WeightPoint> weights_midB; |
---|
| 86 | midB.get_weights(weights_midB); |
---|
| 87 | |
---|
| 88 | // Get the dispersion points for the longuest_edgeC |
---|
| 89 | vector<WeightPoint> weights_longC; |
---|
| 90 | longC.get_weights(weights_longC); |
---|
| 91 | |
---|
| 92 | |
---|
| 93 | |
---|
| 94 | // Perform the computation, with all weight points |
---|
| 95 | double sum = 0.0; |
---|
| 96 | double norm = 0.0; |
---|
| 97 | double vol = 0.0; |
---|
| 98 | |
---|
| 99 | // Loop over short_edgeA weight points |
---|
| 100 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
| 101 | dp[1] = weights_shortA[i].value; |
---|
| 102 | |
---|
| 103 | // Loop over longer_edgeB weight points |
---|
| 104 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
| 105 | dp[2] = weights_midB[j].value; |
---|
| 106 | |
---|
| 107 | // Loop over longuest_edgeC weight points |
---|
| 108 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
| 109 | dp[3] = weights_longC[k].value; |
---|
| 110 | //Un-normalize by volume |
---|
| 111 | sum += weights_shortA[i].weight * weights_midB[j].weight |
---|
| 112 | * weights_longC[k].weight * CSParallelepiped(dp, q) |
---|
| 113 | * weights_shortA[i].value*weights_midB[j].value |
---|
| 114 | * weights_longC[k].value; |
---|
| 115 | //Find average volume |
---|
| 116 | vol += weights_shortA[i].weight * weights_midB[j].weight |
---|
| 117 | * weights_longC[k].weight |
---|
| 118 | * weights_shortA[i].value * weights_midB[j].value |
---|
| 119 | * weights_longC[k].value; |
---|
| 120 | |
---|
| 121 | norm += weights_shortA[i].weight |
---|
| 122 | * weights_midB[j].weight * weights_longC[k].weight; |
---|
| 123 | } |
---|
| 124 | } |
---|
| 125 | } |
---|
| 126 | if (vol != 0.0 && norm != 0.0) { |
---|
| 127 | //Re-normalize by avg volume |
---|
| 128 | sum = sum/(vol/norm);} |
---|
| 129 | |
---|
| 130 | return sum/norm + background(); |
---|
| 131 | } |
---|
| 132 | /** |
---|
| 133 | * Function to evaluate 2D scattering function |
---|
| 134 | * @param q_x: value of Q along x |
---|
| 135 | * @param q_y: value of Q along y |
---|
| 136 | * @return: function value |
---|
| 137 | */ |
---|
| 138 | double CSParallelepipedModel :: operator()(double qx, double qy) { |
---|
| 139 | CSParallelepipedParameters dp; |
---|
| 140 | // Fill parameter array |
---|
| 141 | dp.scale = scale(); |
---|
| 142 | dp.shortA = shortA(); |
---|
| 143 | dp.midB = midB(); |
---|
| 144 | dp.longC = longC(); |
---|
| 145 | dp.rimA = rimA(); |
---|
| 146 | dp.rimB = rimB(); |
---|
| 147 | dp.rimC = rimC(); |
---|
| 148 | dp.sld_rimA = sld_rimA(); |
---|
| 149 | dp.sld_rimB = sld_rimB(); |
---|
| 150 | dp.sld_rimC = sld_rimC(); |
---|
| 151 | dp.sld_pcore = sld_pcore(); |
---|
| 152 | dp.sld_solv = sld_solv(); |
---|
| 153 | dp.background = 0.0; |
---|
| 154 | //dp.background = background(); |
---|
| 155 | dp.parallel_theta = parallel_theta(); |
---|
| 156 | dp.parallel_phi = parallel_phi(); |
---|
| 157 | dp.parallel_psi = parallel_psi(); |
---|
| 158 | |
---|
| 159 | |
---|
| 160 | |
---|
| 161 | // Get the dispersion points for the short_edgeA |
---|
| 162 | vector<WeightPoint> weights_shortA; |
---|
| 163 | shortA.get_weights(weights_shortA); |
---|
| 164 | |
---|
| 165 | // Get the dispersion points for the longer_edgeB |
---|
| 166 | vector<WeightPoint> weights_midB; |
---|
| 167 | midB.get_weights(weights_midB); |
---|
| 168 | |
---|
| 169 | // Get the dispersion points for the longuest_edgeC |
---|
| 170 | vector<WeightPoint> weights_longC; |
---|
| 171 | longC.get_weights(weights_longC); |
---|
| 172 | |
---|
| 173 | // Get angular averaging for theta |
---|
| 174 | vector<WeightPoint> weights_parallel_theta; |
---|
| 175 | parallel_theta.get_weights(weights_parallel_theta); |
---|
| 176 | |
---|
| 177 | // Get angular averaging for phi |
---|
| 178 | vector<WeightPoint> weights_parallel_phi; |
---|
| 179 | parallel_phi.get_weights(weights_parallel_phi); |
---|
| 180 | |
---|
| 181 | // Get angular averaging for psi |
---|
| 182 | vector<WeightPoint> weights_parallel_psi; |
---|
| 183 | parallel_psi.get_weights(weights_parallel_psi); |
---|
| 184 | |
---|
| 185 | // Perform the computation, with all weight points |
---|
| 186 | double sum = 0.0; |
---|
| 187 | double norm = 0.0; |
---|
| 188 | double norm_vol = 0.0; |
---|
| 189 | double vol = 0.0; |
---|
[4628e31] | 190 | double pi = 4.0*atan(1.0); |
---|
[18f2ca1] | 191 | |
---|
| 192 | // Loop over radius weight points |
---|
| 193 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
| 194 | dp.shortA = weights_shortA[i].value; |
---|
| 195 | |
---|
| 196 | // Loop over longer_edgeB weight points |
---|
| 197 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
| 198 | dp.midB = weights_midB[j].value; |
---|
| 199 | |
---|
| 200 | // Average over longuest_edgeC distribution |
---|
| 201 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
| 202 | dp.longC = weights_longC[k].value; |
---|
| 203 | |
---|
| 204 | // Average over theta distribution |
---|
| 205 | for(int l=0; l< (int)weights_parallel_theta.size(); l++) { |
---|
| 206 | dp.parallel_theta = weights_parallel_theta[l].value; |
---|
| 207 | |
---|
| 208 | // Average over phi distribution |
---|
| 209 | for(int m=0; m< (int)weights_parallel_phi.size(); m++) { |
---|
| 210 | dp.parallel_phi = weights_parallel_phi[m].value; |
---|
| 211 | |
---|
| 212 | // Average over phi distribution |
---|
| 213 | for(int n=0; n< (int)weights_parallel_psi.size(); n++) { |
---|
| 214 | dp.parallel_psi = weights_parallel_psi[n].value; |
---|
| 215 | //Un-normalize by volume |
---|
| 216 | double _ptvalue = weights_shortA[i].weight |
---|
| 217 | * weights_midB[j].weight |
---|
| 218 | * weights_longC[k].weight |
---|
| 219 | * weights_parallel_theta[l].weight |
---|
| 220 | * weights_parallel_phi[m].weight |
---|
| 221 | * weights_parallel_psi[n].weight |
---|
| 222 | * csparallelepiped_analytical_2DXY(&dp, qx, qy) |
---|
| 223 | * weights_shortA[i].value*weights_midB[j].value |
---|
| 224 | * weights_longC[k].value; |
---|
| 225 | |
---|
| 226 | if (weights_parallel_theta.size()>1) { |
---|
[4628e31] | 227 | _ptvalue *= fabs(sin(weights_parallel_theta[l].value*pi/180.0)); |
---|
[18f2ca1] | 228 | } |
---|
| 229 | sum += _ptvalue; |
---|
| 230 | //Find average volume |
---|
| 231 | vol += weights_shortA[i].weight |
---|
| 232 | * weights_midB[j].weight |
---|
| 233 | * weights_longC[k].weight |
---|
| 234 | * weights_shortA[i].value*weights_midB[j].value |
---|
| 235 | * weights_longC[k].value; |
---|
| 236 | //Find norm for volume |
---|
| 237 | norm_vol += weights_shortA[i].weight |
---|
| 238 | * weights_midB[j].weight |
---|
| 239 | * weights_longC[k].weight; |
---|
| 240 | |
---|
| 241 | norm += weights_shortA[i].weight |
---|
| 242 | * weights_midB[j].weight |
---|
| 243 | * weights_longC[k].weight |
---|
| 244 | * weights_parallel_theta[l].weight |
---|
| 245 | * weights_parallel_phi[m].weight |
---|
| 246 | * weights_parallel_psi[n].weight; |
---|
| 247 | } |
---|
| 248 | } |
---|
| 249 | |
---|
| 250 | } |
---|
| 251 | } |
---|
| 252 | } |
---|
| 253 | } |
---|
| 254 | // Averaging in theta needs an extra normalization |
---|
| 255 | // factor to account for the sin(theta) term in the |
---|
| 256 | // integration (see documentation). |
---|
| 257 | if (weights_parallel_theta.size()>1) norm = norm / asin(1.0); |
---|
| 258 | |
---|
| 259 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 260 | //Re-normalize by avg volume |
---|
| 261 | sum = sum/(vol/norm_vol);} |
---|
| 262 | |
---|
| 263 | return sum/norm + background(); |
---|
| 264 | } |
---|
| 265 | |
---|
| 266 | |
---|
| 267 | /** |
---|
| 268 | * Function to evaluate 2D scattering function |
---|
| 269 | * @param pars: parameters of the cylinder |
---|
| 270 | * @param q: q-value |
---|
| 271 | * @param phi: angle phi |
---|
| 272 | * @return: function value |
---|
| 273 | */ |
---|
| 274 | double CSParallelepipedModel :: evaluate_rphi(double q, double phi) { |
---|
| 275 | double qx = q*cos(phi); |
---|
| 276 | double qy = q*sin(phi); |
---|
| 277 | return (*this).operator()(qx, qy); |
---|
| 278 | } |
---|
| 279 | /** |
---|
| 280 | * Function to calculate effective radius |
---|
| 281 | * @return: effective radius value |
---|
| 282 | */ |
---|
| 283 | double CSParallelepipedModel :: calculate_ER() { |
---|
| 284 | CSParallelepipedParameters dp; |
---|
| 285 | dp.shortA = shortA(); |
---|
| 286 | dp.midB = midB(); |
---|
| 287 | dp.longC = longC(); |
---|
| 288 | dp.rimA = rimA(); |
---|
| 289 | dp.rimB = rimB(); |
---|
| 290 | dp.rimC = rimC(); |
---|
| 291 | |
---|
| 292 | double rad_out = 0.0; |
---|
| 293 | double pi = 4.0*atan(1.0); |
---|
| 294 | double suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
| 295 | double height =(dp.longC + 2.0*dp.rimC); |
---|
| 296 | // Perform the computation, with all weight points |
---|
| 297 | double sum = 0.0; |
---|
| 298 | double norm = 0.0; |
---|
| 299 | |
---|
| 300 | // Get the dispersion points for the short_edgeA |
---|
| 301 | vector<WeightPoint> weights_shortA; |
---|
| 302 | shortA.get_weights(weights_shortA); |
---|
| 303 | |
---|
| 304 | // Get the dispersion points for the longer_edgeB |
---|
| 305 | vector<WeightPoint> weights_midB; |
---|
| 306 | midB.get_weights(weights_midB); |
---|
| 307 | |
---|
| 308 | // Get angular averaging for the longuest_edgeC |
---|
| 309 | vector<WeightPoint> weights_longC; |
---|
| 310 | longC.get_weights(weights_longC); |
---|
| 311 | |
---|
| 312 | // Loop over radius weight points |
---|
| 313 | for(int i=0; i< (int)weights_shortA.size(); i++) { |
---|
| 314 | dp.shortA = weights_shortA[i].value; |
---|
| 315 | |
---|
| 316 | // Loop over longer_edgeB weight points |
---|
| 317 | for(int j=0; j< (int)weights_midB.size(); j++) { |
---|
| 318 | dp.midB = weights_midB[j].value; |
---|
| 319 | |
---|
| 320 | // Average over longuest_edgeC distribution |
---|
| 321 | for(int k=0; k< (int)weights_longC.size(); k++) { |
---|
| 322 | dp.longC = weights_longC[k].value; |
---|
| 323 | //Calculate surface averaged radius |
---|
| 324 | //This is rough approximation. |
---|
| 325 | suf_rad = sqrt((dp.shortA*dp.midB+2.0*dp.rimA*dp.midB+2.0*dp.rimA*dp.shortA)/pi); |
---|
| 326 | height =(dp.longC + 2.0*dp.rimC); |
---|
| 327 | //Note: output of "DiamCyl(dp.length,dp.radius)" is a DIAMETER. |
---|
| 328 | sum +=weights_shortA[i].weight* weights_midB[j].weight |
---|
| 329 | * weights_longC[k].weight*DiamCyl(height, suf_rad)/2.0; |
---|
| 330 | norm += weights_shortA[i].weight* weights_midB[j].weight*weights_longC[k].weight; |
---|
| 331 | } |
---|
| 332 | } |
---|
| 333 | } |
---|
| 334 | |
---|
| 335 | if (norm != 0){ |
---|
| 336 | //return the averaged value |
---|
| 337 | rad_out = sum/norm;} |
---|
| 338 | else{ |
---|
| 339 | //return normal value |
---|
| 340 | //Note: output of "DiamCyl(length,radius)" is DIAMETER. |
---|
| 341 | rad_out = DiamCyl(dp.longC, suf_rad)/2.0;} |
---|
| 342 | return rad_out; |
---|
| 343 | |
---|
| 344 | } |
---|