source: sasview/sansmodels/src/sans/models/c_models/coreshellsphere.cpp @ 5a0d01b3

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 5a0d01b3 was c451be9, checked in by Jae Cho <jhjcho@…>, 15 years ago

corrections on the definition of polydispersity as suggested by steve K: should be normalized by average volume

  • Property mode set to 100644
File size: 4.4 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 */
21
22#include <math.h>
23#include "models.hh"
24#include "parameters.hh"
25#include <stdio.h>
26using namespace std;
27
28extern "C" {
29        #include "libSphere.h"
30        #include "core_shell.h"
31}
32
33CoreShellModel :: CoreShellModel() {
34        scale      = Parameter(1.0);
35        radius     = Parameter(60.0, true);
36        radius.set_min(0.0);
37        thickness  = Parameter(10.0, true);
38        thickness.set_min(0.0);
39        core_sld   = Parameter(1.e-6);
40        shell_sld  = Parameter(2.e-6);
41        solvent_sld = Parameter(3.e-6);
42        background = Parameter(0.0);
43}
44
45/**
46 * Function to evaluate 1D scattering function
47 * The NIST IGOR library is used for the actual calculation.
48 * @param q: q-value
49 * @return: function value
50 */
51double CoreShellModel :: operator()(double q) {
52        double dp[7];
53
54        // Fill parameter array for IGOR library
55        // Add the background after averaging
56
57        dp[0] = scale();
58        dp[1] = radius();
59        dp[2] = thickness();
60        dp[3] = core_sld();
61        dp[4] = shell_sld();
62        dp[5] = solvent_sld();
63        dp[6] = 0.0;
64
65
66        // Get the dispersion points for the radius
67        vector<WeightPoint> weights_rad;
68        radius.get_weights(weights_rad);
69
70        // Get the dispersion points for the thickness
71        vector<WeightPoint> weights_thick;
72        thickness.get_weights(weights_thick);
73
74        // Perform the computation, with all weight points
75        double sum = 0.0;
76        double norm = 0.0;
77        double vol = 0.0;
78
79        // Loop over radius weight points
80        for(int i=0; i<weights_rad.size(); i++) {
81                dp[1] = weights_rad[i].value;
82
83                // Loop over thickness weight points
84                for(int j=0; j<weights_thick.size(); j++) {
85                        dp[2] = weights_thick[j].value;
86                        //Un-normalize SphereForm by volume
87                        sum += weights_rad[i].weight
88                                * weights_thick[j].weight * CoreShellForm(dp, q)* pow(weights_rad[i].value+weights_thick[j].value,3);
89
90                        //Find average volume
91                        vol += weights_rad[i].weight * weights_thick[j].weight
92                                * pow(weights_rad[i].value+weights_thick[j].value,3);
93                        norm += weights_rad[i].weight
94                                * weights_thick[j].weight;
95                }
96        }
97
98        if (vol != 0.0 && norm != 0.0) {
99                //Re-normalize by avg volume
100                sum = sum/(vol/norm);}
101
102        return sum/norm + background();
103}
104
105/**
106 * Function to evaluate 2D scattering function
107 * @param q_x: value of Q along x
108 * @param q_y: value of Q along y
109 * @return: function value
110 */
111double CoreShellModel :: operator()(double qx, double qy) {
112        double q = sqrt(qx*qx + qy*qy);
113        return (*this).operator()(q);
114}
115
116/**
117 * Function to evaluate 2D scattering function
118 * @param pars: parameters of the sphere
119 * @param q: q-value
120 * @param phi: angle phi
121 * @return: function value
122 */
123double CoreShellModel :: evaluate_rphi(double q, double phi) {
124        return (*this).operator()(q);
125}
126/**
127 * Function to calculate effective radius
128 * @return: effective radius value
129 */
130double CoreShellModel :: calculate_ER() {
131        CoreShellParameters dp;
132
133        dp.radius     = radius();
134        dp.thickness  = thickness();
135
136        double rad_out = 0.0;
137
138        // Perform the computation, with all weight points
139        double sum = 0.0;
140        double norm = 0.0;
141
142
143        // Get the dispersion points for the major shell
144        vector<WeightPoint> weights_thickness;
145        thickness.get_weights(weights_thickness);
146
147        // Get the dispersion points for the minor shell
148        vector<WeightPoint> weights_radius ;
149        radius.get_weights(weights_radius);
150
151        // Loop over major shell weight points
152        for(int j=0; j< (int)weights_thickness.size(); j++) {
153                dp.thickness = weights_thickness[j].value;
154                for(int k=0; k< (int)weights_radius.size(); k++) {
155                        dp.radius = weights_radius[k].value;
156                        sum += weights_thickness[j].weight
157                                * weights_radius[k].weight*(dp.radius+dp.thickness);
158                        norm += weights_thickness[j].weight* weights_radius[k].weight;
159                }
160        }
161        if (norm != 0){
162                //return the averaged value
163                rad_out =  sum/norm;}
164        else{
165                //return normal value
166                rad_out = (dp.radius+dp.thickness);}
167
168        return rad_out;
169}
Note: See TracBrowser for help on using the repository browser.