[339ce67] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | */ |
---|
| 21 | |
---|
| 22 | #include <math.h> |
---|
| 23 | #include "models.hh" |
---|
| 24 | #include "parameters.hh" |
---|
| 25 | #include <stdio.h> |
---|
| 26 | using namespace std; |
---|
| 27 | |
---|
| 28 | extern "C" { |
---|
| 29 | #include "libCylinder.h" |
---|
| 30 | #include "capcyl.h" |
---|
| 31 | } |
---|
| 32 | |
---|
| 33 | CappedCylinderModel :: CappedCylinderModel() { |
---|
| 34 | scale = Parameter(1.0); |
---|
| 35 | rad_cyl = Parameter(20.0); |
---|
| 36 | rad_cyl.set_min(0.0); |
---|
| 37 | len_cyl = Parameter(400.0, true); |
---|
| 38 | len_cyl.set_min(0.0); |
---|
| 39 | rad_cap = Parameter(40.0); |
---|
| 40 | rad_cap.set_min(0.0); |
---|
| 41 | sld_capcyl = Parameter(1.0e-6); |
---|
| 42 | sld_solv = Parameter(6.3e-6); |
---|
| 43 | background = Parameter(0.0); |
---|
| 44 | theta = Parameter(0.0, true); |
---|
| 45 | phi = Parameter(0.0, true); |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | /** |
---|
| 49 | * Function to evaluate 1D scattering function |
---|
| 50 | * The NIST IGOR library is used for the actual calculation. |
---|
| 51 | * @param q: q-value |
---|
| 52 | * @return: function value |
---|
| 53 | */ |
---|
| 54 | double CappedCylinderModel :: operator()(double q) { |
---|
| 55 | double dp[7]; |
---|
| 56 | |
---|
| 57 | // Fill parameter array for IGOR library |
---|
| 58 | // Add the background after averaging |
---|
| 59 | dp[0] = scale(); |
---|
| 60 | dp[1] = rad_cyl(); |
---|
| 61 | dp[2] = len_cyl(); |
---|
| 62 | dp[3] = rad_cap(); |
---|
| 63 | dp[4] = sld_capcyl(); |
---|
| 64 | dp[5] = sld_solv(); |
---|
| 65 | dp[6] = 0.0; |
---|
| 66 | |
---|
| 67 | // Get the dispersion points for the rad_cyl |
---|
| 68 | vector<WeightPoint> weights_rad_cyl; |
---|
| 69 | rad_cyl.get_weights(weights_rad_cyl); |
---|
| 70 | // Get the dispersion points for the len_cyl |
---|
| 71 | vector<WeightPoint> weights_len_cyl; |
---|
| 72 | len_cyl.get_weights(weights_len_cyl); |
---|
| 73 | // Get the dispersion points for the rad_cap |
---|
| 74 | vector<WeightPoint> weights_rad_cap; |
---|
| 75 | rad_cap.get_weights(weights_rad_cap); |
---|
| 76 | |
---|
| 77 | // Perform the computation, with all weight points |
---|
| 78 | double sum = 0.0; |
---|
| 79 | double norm = 0.0; |
---|
| 80 | double vol = 0.0; |
---|
| 81 | double pi,hDist,result; |
---|
| 82 | double vol_i = 0.0; |
---|
| 83 | pi = 4.0*atan(1.0); |
---|
| 84 | // Loop over radius weight points |
---|
[34c2649] | 85 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
[339ce67] | 86 | dp[1] = weights_rad_cyl[i].value; |
---|
[34c2649] | 87 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
[339ce67] | 88 | dp[2] = weights_len_cyl[j].value; |
---|
[34c2649] | 89 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
[339ce67] | 90 | dp[3] = weights_rad_cap[k].value; |
---|
| 91 | |
---|
| 92 | //Un-normalize SphereForm by volume |
---|
| 93 | hDist = -1.0*sqrt(fabs(dp[3]*dp[3]-dp[1]*dp[1])); |
---|
| 94 | vol_i = pi*dp[1]*dp[1]*dp[2]+2.0*pi/3.0*((dp[3]-hDist)*(dp[3]-hDist)* |
---|
| 95 | (2.0*(dp[3]+hDist))); |
---|
| 96 | result = CappedCylinder(dp, q) * vol_i; |
---|
| 97 | // This FIXES a singualrity the kernel in libigor. |
---|
| 98 | if ( result == INFINITY || result == NAN){ |
---|
| 99 | result = 0.0; |
---|
| 100 | } |
---|
| 101 | sum += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
| 102 | * result; |
---|
| 103 | //Find average volume |
---|
| 104 | vol += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight |
---|
| 105 | * vol_i; |
---|
| 106 | |
---|
| 107 | norm += weights_rad_cyl[i].weight*weights_len_cyl[j].weight*weights_rad_cap[k].weight; |
---|
| 108 | } |
---|
| 109 | } |
---|
| 110 | } |
---|
| 111 | |
---|
| 112 | if (vol != 0.0 && norm != 0.0) { |
---|
| 113 | //Re-normalize by avg volume |
---|
| 114 | sum = sum/(vol/norm);} |
---|
| 115 | return sum/norm + background(); |
---|
| 116 | } |
---|
| 117 | |
---|
| 118 | /** |
---|
| 119 | * Function to evaluate 2D scattering function |
---|
| 120 | * @param q_x: value of Q along x |
---|
| 121 | * @param q_y: value of Q along y |
---|
| 122 | * @return: function value |
---|
| 123 | */ |
---|
| 124 | double CappedCylinderModel :: operator()(double qx, double qy) { |
---|
| 125 | CapCylParameters dp; |
---|
| 126 | |
---|
| 127 | dp.scale = scale(); |
---|
| 128 | dp.rad_cyl = rad_cyl(); |
---|
| 129 | dp.len_cyl = len_cyl(); |
---|
| 130 | dp.rad_cap = rad_cap(); |
---|
| 131 | dp.sld_capcyl = sld_capcyl(); |
---|
| 132 | dp.sld_solv = sld_solv(); |
---|
| 133 | dp.background = 0.0; |
---|
| 134 | dp.theta = theta(); |
---|
| 135 | dp.phi = phi(); |
---|
| 136 | |
---|
| 137 | // Get the dispersion points for the rad_bar |
---|
| 138 | vector<WeightPoint> weights_rad_cyl; |
---|
| 139 | rad_cyl.get_weights(weights_rad_cyl); |
---|
| 140 | |
---|
| 141 | // Get the dispersion points for the len_bar |
---|
| 142 | vector<WeightPoint> weights_len_cyl; |
---|
| 143 | len_cyl.get_weights(weights_len_cyl); |
---|
| 144 | |
---|
| 145 | // Get the dispersion points for the rad_bell |
---|
| 146 | vector<WeightPoint> weights_rad_cap; |
---|
| 147 | rad_cap.get_weights(weights_rad_cap); |
---|
| 148 | |
---|
| 149 | // Get angular averaging for theta |
---|
| 150 | vector<WeightPoint> weights_theta; |
---|
| 151 | theta.get_weights(weights_theta); |
---|
| 152 | |
---|
| 153 | // Get angular averaging for phi |
---|
| 154 | vector<WeightPoint> weights_phi; |
---|
| 155 | phi.get_weights(weights_phi); |
---|
| 156 | |
---|
| 157 | |
---|
| 158 | // Perform the computation, with all weight points |
---|
| 159 | double sum = 0.0; |
---|
| 160 | double norm = 0.0; |
---|
| 161 | double norm_vol = 0.0; |
---|
| 162 | double vol = 0.0; |
---|
[34c2649] | 163 | double pi,hDist; |
---|
[339ce67] | 164 | double vol_i = 0.0; |
---|
| 165 | pi = 4.0*atan(1.0); |
---|
| 166 | |
---|
| 167 | // Loop over radius weight points |
---|
[34c2649] | 168 | for(size_t i=0; i<weights_rad_cyl.size(); i++) { |
---|
[339ce67] | 169 | dp.rad_cyl = weights_rad_cyl[i].value; |
---|
[34c2649] | 170 | for(size_t j=0; j<weights_len_cyl.size(); j++) { |
---|
[339ce67] | 171 | dp.len_cyl = weights_len_cyl[j].value; |
---|
[34c2649] | 172 | for(size_t k=0; k<weights_rad_cap.size(); k++) { |
---|
[339ce67] | 173 | dp.rad_cap = weights_rad_cap[k].value; |
---|
| 174 | // Average over theta distribution |
---|
[34c2649] | 175 | for(size_t l=0; l< weights_theta.size(); l++) { |
---|
[339ce67] | 176 | dp.theta = weights_theta[l].value; |
---|
| 177 | // Average over phi distribution |
---|
[34c2649] | 178 | for(size_t m=0; m< weights_phi.size(); m++) { |
---|
[339ce67] | 179 | dp.phi = weights_phi[m].value; |
---|
| 180 | //Un-normalize Form by volume |
---|
| 181 | hDist = -1.0*sqrt(fabs(dp.rad_cap*dp.rad_cap-dp.rad_cyl*dp.rad_cyl)); |
---|
| 182 | vol_i = pi*dp.rad_cyl*dp.rad_cyl*dp.len_cyl+2.0*pi/3.0*((dp.rad_cap-hDist)*(dp.rad_cap-hDist)* |
---|
| 183 | (2*dp.rad_cap+hDist)); |
---|
| 184 | |
---|
| 185 | double _ptvalue = weights_rad_cyl[i].weight |
---|
| 186 | * weights_len_cyl[j].weight |
---|
| 187 | * weights_rad_cap[k].weight |
---|
| 188 | * weights_theta[l].weight |
---|
| 189 | * weights_phi[m].weight |
---|
| 190 | * vol_i |
---|
| 191 | * capcyl_analytical_2DXY(&dp, qx, qy); |
---|
| 192 | //* pow(weights_rad[i].value,3.0); |
---|
| 193 | // Consider when there is infinte or nan. |
---|
| 194 | if ( _ptvalue == INFINITY || _ptvalue == NAN){ |
---|
| 195 | _ptvalue = 0.0; |
---|
| 196 | } |
---|
| 197 | if (weights_theta.size()>1) { |
---|
[4628e31] | 198 | _ptvalue *= fabs(sin(weights_theta[l].value*pi/180.0)); |
---|
[339ce67] | 199 | } |
---|
| 200 | sum += _ptvalue; |
---|
| 201 | // This model dose not need the volume of spheres correction!!! |
---|
| 202 | //Find average volume |
---|
| 203 | vol += weights_rad_cyl[i].weight |
---|
| 204 | * weights_len_cyl[j].weight |
---|
| 205 | * weights_rad_cap[k].weight |
---|
| 206 | * vol_i; |
---|
| 207 | //Find norm for volume |
---|
| 208 | norm_vol += weights_rad_cyl[i].weight |
---|
| 209 | * weights_len_cyl[j].weight |
---|
| 210 | * weights_rad_cap[k].weight; |
---|
| 211 | |
---|
| 212 | norm += weights_rad_cyl[i].weight |
---|
| 213 | * weights_len_cyl[j].weight |
---|
| 214 | * weights_rad_cap[k].weight |
---|
| 215 | * weights_theta[l].weight |
---|
| 216 | * weights_phi[m].weight; |
---|
| 217 | } |
---|
| 218 | } |
---|
| 219 | } |
---|
| 220 | } |
---|
| 221 | } |
---|
| 222 | // Averaging in theta needs an extra normalization |
---|
| 223 | // factor to account for the sin(theta) term in the |
---|
| 224 | // integration (see documentation). |
---|
| 225 | if (weights_theta.size()>1) norm = norm / asin(1.0); |
---|
| 226 | |
---|
| 227 | if (vol != 0.0 && norm_vol != 0.0) { |
---|
| 228 | //Re-normalize by avg volume |
---|
| 229 | sum = sum/(vol/norm_vol);} |
---|
| 230 | |
---|
| 231 | return sum/norm + background(); |
---|
| 232 | } |
---|
| 233 | |
---|
| 234 | /** |
---|
| 235 | * Function to evaluate 2D scattering function |
---|
| 236 | * @param pars: parameters of the SCCrystal |
---|
| 237 | * @param q: q-value |
---|
| 238 | * @param phi: angle phi |
---|
| 239 | * @return: function value |
---|
| 240 | */ |
---|
| 241 | double CappedCylinderModel :: evaluate_rphi(double q, double phi) { |
---|
| 242 | return (*this).operator()(q); |
---|
| 243 | } |
---|
| 244 | |
---|
| 245 | /** |
---|
| 246 | * Function to calculate effective radius |
---|
| 247 | * @return: effective radius value |
---|
| 248 | */ |
---|
| 249 | double CappedCylinderModel :: calculate_ER() { |
---|
| 250 | //NOT implemented yet!!! |
---|
[34c2649] | 251 | return 0.0; |
---|
[339ce67] | 252 | } |
---|