source: sasview/sansmodels/src/sans/models/c_models/HayterMSA.cpp @ 0b12abb5

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 0b12abb5 was c724ccd, checked in by Jae Cho <jhjcho@…>, 15 years ago

More models added and correction of Wrappergenerator on model parameter value precision

  • Property mode set to 100644
File size: 4.7 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 *      TODO: refactor so that we pull in the old sansmodels.c_extensions
21 */
22
23#include <math.h>
24#include "models.hh"
25#include "parameters.hh"
26#include <stdio.h>
27using namespace std;
28
29extern "C" {
30        #include "libStructureFactor.h"
31        #include "HayterMSA.h"
32}
33
34HayterMSAStructure :: HayterMSAStructure() {
35        effect_radius      = Parameter(20.75, true);
36        effect_radius.set_min(0.0);
37        charge      = Parameter(19.0, true);
38        volfraction = Parameter(0.0192, true);
39        volfraction.set_min(0.0);
40        temperature = Parameter(318.16, true);
41        temperature.set_min(0.0);
42        saltconc   = Parameter(0.0);
43        dielectconst  = Parameter(71.08);
44}
45
46/**
47 * Function to evaluate 1D scattering function
48 * The NIST IGOR library is used for the actual calculation.
49 * @param q: q-value
50 * @return: function value
51 */
52double HayterMSAStructure :: operator()(double q) {
53        double dp[6];
54
55        // Fill parameter array for IGOR library
56        // Add the background after averaging
57        dp[0] = 2.0*effect_radius();
58        dp[1] = fabs(charge());
59        dp[2] = volfraction();
60        dp[3] = temperature();
61        dp[4] = saltconc();
62        dp[5] = dielectconst();
63
64        // Get the dispersion points for the radius
65        vector<WeightPoint> weights_rad;
66        effect_radius.get_weights(weights_rad);
67
68        // Perform the computation, with all weight points
69        double sum = 0.0;
70        double norm = 0.0;
71
72        // Loop over radius weight points
73        for(int i=0; i<weights_rad.size(); i++) {
74                dp[0] = 2.0*weights_rad[i].value;
75
76                sum += weights_rad[i].weight
77                                * HayterPenfoldMSA(dp, q);
78                norm += weights_rad[i].weight;
79        }
80        return sum/norm ;
81}
82
83/**
84 * Function to evaluate 2D scattering function
85 * @param q_x: value of Q along x
86 * @param q_y: value of Q along y
87 * @return: function value
88 */
89double HayterMSAStructure :: operator()(double qx, double qy) {
90        HayterMSAParameters dp;
91        // Fill parameter array
92        dp.effect_radius      = effect_radius();
93        dp.charge      = charge();
94        dp.volfraction = volfraction();
95        dp.temperature   = temperature();
96        dp.saltconc   = saltconc();
97        dp.dielectconst   = dielectconst();
98
99        // Get the dispersion points for the radius
100        vector<WeightPoint> weights_rad;
101        effect_radius.get_weights(weights_rad);
102
103        // Perform the computation, with all weight points
104        double sum = 0.0;
105        double norm = 0.0;
106
107        // Loop over radius weight points
108        for(int i=0; i<weights_rad.size(); i++) {
109                dp.effect_radius = weights_rad[i].value;
110
111                double _ptvalue = weights_rad[i].weight
112                        * HayterMSA_analytical_2DXY(&dp, qx, qy);
113                sum += _ptvalue;
114
115                norm += weights_rad[i].weight;
116        }
117        // Averaging in theta needs an extra normalization
118        // factor to account for the sin(theta) term in the
119        // integration (see documentation).
120        return sum/norm;
121}
122
123/**
124 * Function to evaluate 2D scattering function
125 * @param pars: parameters of the cylinder
126 * @param q: q-value
127 * @param phi: angle phi
128 * @return: function value
129 */
130double HayterMSAStructure :: evaluate_rphi(double q, double phi) {
131        double qx = q*cos(phi);
132        double qy = q*sin(phi);
133        return (*this).operator()(qx, qy);
134}
135/**
136 * Function to calculate effective radius
137 * @return: effective radius value
138 */
139double HayterMSAStructure :: calculate_ER() {
140//NOT implemented yet!!!
141}
142
143// Testing code
144/*
145int main(void)
146{
147        SquareWellModel c = SquareWellModel();
148
149        printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001));
150        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
151        c.radius.dispersion = new GaussianDispersion();
152        c.radius.dispersion->npts = 100;
153        c.radius.dispersion->width = 5;
154
155        //c.length.dispersion = GaussianDispersion();
156        //c.length.dispersion.npts = 20;
157        //c.length.dispersion.width = 65;
158
159        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
160        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
161        printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001));
162        printf("I(Q=%g,  Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854));
163
164
165
166        double i_avg = c(0.01, 0.01);
167        double i_1d = c(sqrt(0.0002));
168
169        printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg);
170        printf("I(Q=%g)         = %g\n", sqrt(0.0002), i_1d);
171        printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg);
172
173
174        return 0;
175}
176*/
Note: See TracBrowser for help on using the repository browser.