[25579e8] | 1 | /** |
---|
| 2 | This software was developed by the University of Tennessee as part of the |
---|
| 3 | Distributed Data Analysis of Neutron Scattering Experiments (DANSE) |
---|
| 4 | project funded by the US National Science Foundation. |
---|
| 5 | |
---|
| 6 | If you use DANSE applications to do scientific research that leads to |
---|
| 7 | publication, we ask that you acknowledge the use of the software with the |
---|
| 8 | following sentence: |
---|
| 9 | |
---|
| 10 | "This work benefited from DANSE software developed under NSF award DMR-0520547." |
---|
| 11 | |
---|
| 12 | copyright 2008, University of Tennessee |
---|
| 13 | */ |
---|
| 14 | |
---|
| 15 | /** |
---|
| 16 | * Scattering model classes |
---|
| 17 | * The classes use the IGOR library found in |
---|
| 18 | * sansmodels/src/libigor |
---|
| 19 | * |
---|
| 20 | * TODO: refactor so that we pull in the old sansmodels.c_extensions |
---|
| 21 | */ |
---|
| 22 | |
---|
| 23 | #include <math.h> |
---|
| 24 | #include "models.hh" |
---|
| 25 | #include "parameters.hh" |
---|
| 26 | #include <stdio.h> |
---|
| 27 | using namespace std; |
---|
| 28 | |
---|
| 29 | extern "C" { |
---|
| 30 | #include "libStructureFactor.h" |
---|
| 31 | #include "HayterMSA.h" |
---|
| 32 | } |
---|
| 33 | |
---|
| 34 | HayterMSAStructure :: HayterMSAStructure() { |
---|
[5eb9154] | 35 | effect_radius = Parameter(20.75, true); |
---|
| 36 | effect_radius.set_min(0.0); |
---|
[25579e8] | 37 | charge = Parameter(19.0, true); |
---|
| 38 | volfraction = Parameter(0.0192, true); |
---|
| 39 | volfraction.set_min(0.0); |
---|
| 40 | temperature = Parameter(318.16, true); |
---|
| 41 | temperature.set_min(0.0); |
---|
| 42 | saltconc = Parameter(0.0); |
---|
| 43 | dielectconst = Parameter(71.08); |
---|
| 44 | } |
---|
| 45 | |
---|
| 46 | /** |
---|
| 47 | * Function to evaluate 1D scattering function |
---|
| 48 | * The NIST IGOR library is used for the actual calculation. |
---|
| 49 | * @param q: q-value |
---|
| 50 | * @return: function value |
---|
| 51 | */ |
---|
| 52 | double HayterMSAStructure :: operator()(double q) { |
---|
| 53 | double dp[6]; |
---|
| 54 | |
---|
| 55 | // Fill parameter array for IGOR library |
---|
| 56 | // Add the background after averaging |
---|
[42ae1d9] | 57 | dp[0] = 2.0*effect_radius(); |
---|
[c724ccd] | 58 | dp[1] = fabs(charge()); |
---|
[25579e8] | 59 | dp[2] = volfraction(); |
---|
| 60 | dp[3] = temperature(); |
---|
| 61 | dp[4] = saltconc(); |
---|
| 62 | dp[5] = dielectconst(); |
---|
| 63 | |
---|
| 64 | // Get the dispersion points for the radius |
---|
| 65 | vector<WeightPoint> weights_rad; |
---|
[5eb9154] | 66 | effect_radius.get_weights(weights_rad); |
---|
[25579e8] | 67 | |
---|
| 68 | // Perform the computation, with all weight points |
---|
| 69 | double sum = 0.0; |
---|
| 70 | double norm = 0.0; |
---|
| 71 | |
---|
| 72 | // Loop over radius weight points |
---|
| 73 | for(int i=0; i<weights_rad.size(); i++) { |
---|
[42ae1d9] | 74 | dp[0] = 2.0*weights_rad[i].value; |
---|
[25579e8] | 75 | |
---|
| 76 | sum += weights_rad[i].weight |
---|
| 77 | * HayterPenfoldMSA(dp, q); |
---|
| 78 | norm += weights_rad[i].weight; |
---|
| 79 | } |
---|
| 80 | return sum/norm ; |
---|
| 81 | } |
---|
| 82 | |
---|
| 83 | /** |
---|
| 84 | * Function to evaluate 2D scattering function |
---|
| 85 | * @param q_x: value of Q along x |
---|
| 86 | * @param q_y: value of Q along y |
---|
| 87 | * @return: function value |
---|
| 88 | */ |
---|
| 89 | double HayterMSAStructure :: operator()(double qx, double qy) { |
---|
| 90 | HayterMSAParameters dp; |
---|
| 91 | // Fill parameter array |
---|
[8b677ec] | 92 | dp.effect_radius = effect_radius(); |
---|
[25579e8] | 93 | dp.charge = charge(); |
---|
| 94 | dp.volfraction = volfraction(); |
---|
| 95 | dp.temperature = temperature(); |
---|
| 96 | dp.saltconc = saltconc(); |
---|
| 97 | dp.dielectconst = dielectconst(); |
---|
| 98 | |
---|
| 99 | // Get the dispersion points for the radius |
---|
| 100 | vector<WeightPoint> weights_rad; |
---|
[5eb9154] | 101 | effect_radius.get_weights(weights_rad); |
---|
[25579e8] | 102 | |
---|
| 103 | // Perform the computation, with all weight points |
---|
| 104 | double sum = 0.0; |
---|
| 105 | double norm = 0.0; |
---|
| 106 | |
---|
| 107 | // Loop over radius weight points |
---|
| 108 | for(int i=0; i<weights_rad.size(); i++) { |
---|
[8b677ec] | 109 | dp.effect_radius = weights_rad[i].value; |
---|
[25579e8] | 110 | |
---|
[8b677ec] | 111 | double _ptvalue = weights_rad[i].weight |
---|
| 112 | * HayterMSA_analytical_2DXY(&dp, qx, qy); |
---|
| 113 | sum += _ptvalue; |
---|
[25579e8] | 114 | |
---|
[8b677ec] | 115 | norm += weights_rad[i].weight; |
---|
[25579e8] | 116 | } |
---|
| 117 | // Averaging in theta needs an extra normalization |
---|
| 118 | // factor to account for the sin(theta) term in the |
---|
| 119 | // integration (see documentation). |
---|
| 120 | return sum/norm; |
---|
| 121 | } |
---|
| 122 | |
---|
| 123 | /** |
---|
| 124 | * Function to evaluate 2D scattering function |
---|
| 125 | * @param pars: parameters of the cylinder |
---|
| 126 | * @param q: q-value |
---|
| 127 | * @param phi: angle phi |
---|
| 128 | * @return: function value |
---|
| 129 | */ |
---|
| 130 | double HayterMSAStructure :: evaluate_rphi(double q, double phi) { |
---|
| 131 | double qx = q*cos(phi); |
---|
| 132 | double qy = q*sin(phi); |
---|
| 133 | return (*this).operator()(qx, qy); |
---|
| 134 | } |
---|
[5eb9154] | 135 | /** |
---|
| 136 | * Function to calculate effective radius |
---|
| 137 | * @return: effective radius value |
---|
| 138 | */ |
---|
| 139 | double HayterMSAStructure :: calculate_ER() { |
---|
| 140 | //NOT implemented yet!!! |
---|
| 141 | } |
---|
[25579e8] | 142 | |
---|
| 143 | // Testing code |
---|
| 144 | /* |
---|
| 145 | int main(void) |
---|
| 146 | { |
---|
| 147 | SquareWellModel c = SquareWellModel(); |
---|
| 148 | |
---|
| 149 | printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
| 150 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 151 | c.radius.dispersion = new GaussianDispersion(); |
---|
| 152 | c.radius.dispersion->npts = 100; |
---|
| 153 | c.radius.dispersion->width = 5; |
---|
| 154 | |
---|
| 155 | //c.length.dispersion = GaussianDispersion(); |
---|
| 156 | //c.length.dispersion.npts = 20; |
---|
| 157 | //c.length.dispersion.width = 65; |
---|
| 158 | |
---|
| 159 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 160 | printf("I(Q=%g) = %g\n", 0.001, c(0.001)); |
---|
| 161 | printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001)); |
---|
| 162 | printf("I(Q=%g, Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854)); |
---|
| 163 | |
---|
| 164 | |
---|
| 165 | |
---|
| 166 | double i_avg = c(0.01, 0.01); |
---|
| 167 | double i_1d = c(sqrt(0.0002)); |
---|
| 168 | |
---|
| 169 | printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg); |
---|
| 170 | printf("I(Q=%g) = %g\n", sqrt(0.0002), i_1d); |
---|
| 171 | printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg); |
---|
| 172 | |
---|
| 173 | |
---|
| 174 | return 0; |
---|
| 175 | } |
---|
[5eb9154] | 176 | */ |
---|