source: sasview/sansmodels/src/sans/models/c_models/DiamEllip.cpp @ 8e91f01

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 8e91f01 was 6b38781, checked in by Jae Cho <jhjcho@…>, 16 years ago

Added 2nd virial coeff. functions

  • Property mode set to 100644
File size: 4.7 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/**
16 * Scattering model classes
17 * The classes use the IGOR library found in
18 *   sansmodels/src/libigor
19 *
20 *      TODO: refactor so that we pull in the old sansmodels.c_extensions
21 */
22
23#include <math.h>
24#include "models.hh"
25#include "parameters.hh"
26#include <stdio.h>
27using namespace std;
28
29extern "C" {
30        #include "libStructureFactor.h"
31        #include "DiamEllip.h"
32}
33
34DiamEllipFunc :: DiamEllipFunc() {
35        radius_a      = Parameter(20.0, true);
36        radius_a.set_min(0.0);
37        radius_b      = Parameter(400, true);
38        radius_b.set_min(0.0);
39}
40
41/**
42 * Function to evaluate 1D scattering function
43 * The NIST IGOR library is used for the actual calculation.
44 * @param q: q-value
45 * @return: function value
46 */
47double DiamEllipFunc :: operator()(double q) {
48        double dp[2];
49
50        // Fill parameter array for IGOR library
51        // Add the background after averaging
52        dp[0] = radius_a();
53        dp[1] = radius_b();
54
55        // Get the dispersion points for the radius a
56        vector<WeightPoint> weights_rad_a;
57        radius_a.get_weights(weights_rad_a);
58
59        // Get the dispersion points for the radius b
60        vector<WeightPoint> weights_rad_b;
61        radius_b.get_weights(weights_rad_b);
62
63        // Perform the computation, with all weight points
64        double sum = 0.0;
65        double norm = 0.0;
66
67        // Loop over radius weight points
68        for(int i=0; i<weights_rad_a.size(); i++) {
69                dp[0] = weights_rad_a[i].value;
70                // Loop over length weight points
71                for(int j=0; j<weights_rad_b.size(); j++) {
72                        dp[1] = weights_rad_b[j].value;
73
74                        sum += weights_rad_a[i].weight*weights_rad_b[j].weight
75                                * DiamEllip(dp, q);
76                        norm += weights_rad_a[i].weight*weights_rad_b[j].weight;
77                }
78        }
79        return sum/norm ;
80}
81
82/**
83 * Function to evaluate 2D scattering function
84 * @param q_x: value of Q along x
85 * @param q_y: value of Q along y
86 * @return: function value
87 */
88double DiamEllipFunc :: operator()(double qx, double qy) {
89        DiamEllipsParameters dp;
90        // Fill parameter array
91        dp.radius_a      = radius_a();
92        dp.radius_b      = radius_b();
93
94        // Get the dispersion points for the radius a
95        vector<WeightPoint> weights_rad_a;
96        radius_a.get_weights(weights_rad_a);
97
98        // Get the dispersion points for the radius b
99        vector<WeightPoint> weights_rad_b;
100        radius_b.get_weights(weights_rad_b);
101
102
103        // Perform the computation, with all weight points
104        double sum = 0.0;
105        double norm = 0.0;
106
107        // Loop over radius weight points
108        for(int i=0; i<weights_rad_a.size(); i++) {
109                dp.radius_a = weights_rad_a[i].value;
110                // Loop over length weight points
111                for(int j=0; j<weights_rad_b.size(); j++) {
112                        dp.radius_b = weights_rad_b[j].value;
113
114                        double _ptvalue = weights_rad_a[i].weight
115                                *weights_rad_b[j].weight* DiamEllips_analytical_2DXY(&dp, qx, qy);
116                        sum += _ptvalue;
117
118                        norm += weights_rad_a[i].weight*weights_rad_b[j].weight;
119                }
120        }
121        // Averaging in theta needs an extra normalization
122        // factor to account for the sin(theta) term in the
123        // integration (see documentation).
124        return sum/norm;
125}
126
127/**
128 * Function to evaluate 2D scattering function
129 * @param pars: parameters of the cylinder
130 * @param q: q-value
131 * @param phi: angle phi
132 * @return: function value
133 */
134double DiamEllipFunc :: evaluate_rphi(double q, double phi) {
135        double qx = q*cos(phi);
136        double qy = q*sin(phi);
137        return (*this).operator()(qx, qy);
138}
139
140// Testing code
141/*
142int main(void)
143{
144        SquareWellModel c = SquareWellModel();
145
146        printf("I(Qx=%g,Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001));
147        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
148        c.radius.dispersion = new GaussianDispersion();
149        c.radius.dispersion->npts = 100;
150        c.radius.dispersion->width = 5;
151
152        //c.length.dispersion = GaussianDispersion();
153        //c.length.dispersion.npts = 20;
154        //c.length.dispersion.width = 65;
155
156        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
157        printf("I(Q=%g) = %g\n", 0.001, c(0.001));
158        printf("I(Qx=%g, Qy=%g) = %g\n", 0.001, 0.001, c(0.001, 0.001));
159        printf("I(Q=%g,  Phi=%g) = %g\n", 0.00447, .7854, c.evaluate_rphi(sqrt(0.00002), .7854));
160
161
162
163        double i_avg = c(0.01, 0.01);
164        double i_1d = c(sqrt(0.0002));
165
166        printf("\nI(Qx=%g, Qy=%g) = %g\n", 0.01, 0.01, i_avg);
167        printf("I(Q=%g)         = %g\n", sqrt(0.0002), i_1d);
168        printf("ratio %g %g\n", i_avg/i_1d, i_1d/i_avg);
169
170
171        return 0;
172}
173*/
Note: See TracBrowser for help on using the repository browser.