source: sasview/sansmodels/src/sans/models/c_models/CEllipticalCylinderModel.cpp @ cad821b

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since cad821b was 9bd69098, checked in by Jae Cho <jhjcho@…>, 15 years ago

recompiled all due to Alina's new eval(run) function

  • Property mode set to 100644
File size: 25.6 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipticalCylinderModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY elliptical_cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "elliptical_cylinder.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipticalCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipticalCylinderModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipticalCylinderModel;
57
58
59static void
60CEllipticalCylinderModel_dealloc(CEllipticalCylinderModel* self)
61{
62    self->ob_type->tp_free((PyObject*)self);
63   
64
65}
66
67static PyObject *
68CEllipticalCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
69{
70    CEllipticalCylinderModel *self;
71   
72    self = (CEllipticalCylinderModel *)type->tp_alloc(type, 0);
73   
74    return (PyObject *)self;
75}
76
77static int
78CEllipticalCylinderModel_init(CEllipticalCylinderModel *self, PyObject *args, PyObject *kwds)
79{
80    if (self != NULL) {
81       
82        // Create parameters
83        self->params = PyDict_New();
84        self->dispersion = PyDict_New();
85        self->model = new EllipticalCylinderModel();
86       
87        // Initialize parameter dictionary
88        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000));
89        PyDict_SetItemString(self->params,"cyl_psi",Py_BuildValue("d",0.000000));
90        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000));
91        PyDict_SetItemString(self->params,"r_minor",Py_BuildValue("d",20.000000));
92        PyDict_SetItemString(self->params,"cyl_theta",Py_BuildValue("d",1.570000));
93        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000));
94        PyDict_SetItemString(self->params,"r_ratio",Py_BuildValue("d",1.500000));
95        PyDict_SetItemString(self->params,"contrast",Py_BuildValue("d",0.000003));
96        PyDict_SetItemString(self->params,"cyl_phi",Py_BuildValue("d",0.000000));
97        // Initialize dispersion / averaging parameter dict
98        DispersionVisitor* visitor = new DispersionVisitor();
99        PyObject * disp_dict;
100        disp_dict = PyDict_New();
101        self->model->r_minor.dispersion->accept_as_source(visitor, self->model->r_minor.dispersion, disp_dict);
102        PyDict_SetItemString(self->dispersion, "r_minor", disp_dict);
103        disp_dict = PyDict_New();
104        self->model->r_ratio.dispersion->accept_as_source(visitor, self->model->r_ratio.dispersion, disp_dict);
105        PyDict_SetItemString(self->dispersion, "r_ratio", disp_dict);
106        disp_dict = PyDict_New();
107        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "length", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->cyl_theta.dispersion->accept_as_source(visitor, self->model->cyl_theta.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "cyl_theta", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->cyl_phi.dispersion->accept_as_source(visitor, self->model->cyl_phi.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "cyl_phi", disp_dict);
115        disp_dict = PyDict_New();
116        self->model->cyl_psi.dispersion->accept_as_source(visitor, self->model->cyl_psi.dispersion, disp_dict);
117        PyDict_SetItemString(self->dispersion, "cyl_psi", disp_dict);
118
119
120         
121        // Create empty log
122        self->log = PyDict_New();
123       
124       
125
126    }
127    return 0;
128}
129
130static PyMemberDef CEllipticalCylinderModel_members[] = {
131    {"params", T_OBJECT, offsetof(CEllipticalCylinderModel, params), 0,
132     "Parameters"},
133        {"dispersion", T_OBJECT, offsetof(CEllipticalCylinderModel, dispersion), 0,
134          "Dispersion parameters"},     
135    {"log", T_OBJECT, offsetof(CEllipticalCylinderModel, log), 0,
136     "Log"},
137    {NULL}  /* Sentinel */
138};
139
140/** Read double from PyObject
141    @param p PyObject
142    @return double
143*/
144double CEllipticalCylinderModel_readDouble(PyObject *p) {
145    if (PyFloat_Check(p)==1) {
146        return (double)(((PyFloatObject *)(p))->ob_fval);
147    } else if (PyInt_Check(p)==1) {
148        return (double)(((PyIntObject *)(p))->ob_ival);
149    } else if (PyLong_Check(p)==1) {
150        return (double)PyLong_AsLong(p);
151    } else {
152        return 0.0;
153    }
154}
155/**
156 * Function to call to evaluate model
157 * @param args: input numpy array q[]
158 * @return: numpy array object
159 */
160 
161static PyObject *evaluateOneDim(EllipticalCylinderModel* model, PyArrayObject *q){
162    PyArrayObject *result;
163   
164    // Check validity of array q , q must be of dimension 1, an array of double
165    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
166    {
167        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
168        //PyErr_SetString(PyExc_ValueError , message);
169        return NULL;
170    }
171    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
172                                                                                  PyArray_DOUBLE);
173        if (result == NULL) {
174        const char * message= "Could not create result ";
175        PyErr_SetString(PyExc_RuntimeError , message);
176                return NULL;
177        }
178         for (int i = 0; i < q->dimensions[0]; i++){
179      double q_value  = *(double *)(q->data + i*q->strides[0]);
180      double *result_value = (double *)(result->data + i*result->strides[0]);
181      *result_value =(*model)(q_value);
182        }
183    return PyArray_Return(result); 
184 }
185/**
186 * Function to call to evaluate model
187 * @param args: input numpy array  [q[],phi[]]
188 * @return: numpy array object
189 */
190static PyObject * evaluateTwoDim( EllipticalCylinderModel* model, 
191                              PyArrayObject *q, PyArrayObject *phi)
192 {
193    PyArrayObject *result;
194    //check validity of input vectors
195    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE
196        || phi->nd != 1 || phi->descr->type_num != PyArray_DOUBLE
197        || phi->dimensions[0] != q->dimensions[0]){
198     
199        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
200        PyErr_SetString(PyExc_ValueError ,"wrong input"); 
201        return NULL;
202    }
203        result= (PyArrayObject *)PyArray_FromDims(q->nd,(int*)(q->dimensions), PyArray_DOUBLE);
204
205        if (result == NULL){
206            const char * message= "Could not create result ";
207        PyErr_SetString(PyExc_RuntimeError , message);
208            return NULL;
209        }
210       
211    for (int i = 0; i < q->dimensions[0]; i++) {
212      double q_value = *(double *)(q->data + i*q->strides[0]);
213      double phi_value = *(double *)(phi->data + i*phi->strides[0]);
214      double *result_value = (double *)(result->data + i*result->strides[0]);
215      if (q_value == 0)
216          *result_value = 0.0;
217      else
218          *result_value = model->evaluate_rphi(q_value, phi_value);
219    }
220    return PyArray_Return(result); 
221 }
222 /**
223 * Function to call to evaluate model
224 * @param args: input numpy array  [x[],y[]]
225 * @return: numpy array object
226 */
227 static PyObject * evaluateTwoDimXY( EllipticalCylinderModel* model, 
228                              PyArrayObject *x, PyArrayObject *y)
229 {
230    PyArrayObject *result;
231    int i,j, x_len, y_len, dims[2];
232    //check validity of input vectors
233    if (x->nd != 2 || x->descr->type_num != PyArray_DOUBLE
234        || y->nd != 2 || y->descr->type_num != PyArray_DOUBLE
235        || y->dimensions[1] != x->dimensions[0]){
236        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
237        PyErr_SetString(PyExc_ValueError , message); 
238        return NULL;
239    }
240   
241        if (PyArray_Check(x) && PyArray_Check(y)) {
242            x_len = dims[0]= x->dimensions[0];
243        y_len = dims[1]= y->dimensions[1];
244           
245            // Make a new double matrix of same dims
246        result=(PyArrayObject *) PyArray_FromDims(2,dims,NPY_DOUBLE);
247        if (result == NULL){
248            const char * message= "Could not create result ";
249        PyErr_SetString(PyExc_RuntimeError , message);
250            return NULL;
251            }
252       
253        /* Do the calculation. */
254        for ( i=0; i< x_len; i++) {
255            for ( j=0; j< y_len; j++) {
256                double x_value = *(double *)(x->data + i*x->strides[0]);
257                    double y_value = *(double *)(y->data + j*y->strides[1]);
258                        double *result_value = (double *)(result->data +
259                              i*result->strides[0] + j*result->strides[1]);
260                        *result_value = (*model)(x_value, y_value);
261            }           
262        }
263        return PyArray_Return(result); 
264       
265        }else{
266                    PyErr_SetString(CEllipticalCylinderModelError, 
267                   "CEllipticalCylinderModel.evaluateTwoDimXY couldn't run.");
268                return NULL;
269                }       
270}
271/**
272 *  evalDistribution function evaluate a model function with input vector
273 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
274 *
275 */ 
276static PyObject * evalDistribution(CEllipticalCylinderModel *self, PyObject *args){
277        PyObject *qx, *qy;
278        PyArrayObject * pars;
279        int npars ,mpars;
280       
281        // Get parameters
282       
283            // Reader parameter dictionary
284    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
285    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
286    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
287    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
288    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
289    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
290    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
291    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
292    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
293    // Read in dispersion parameters
294    PyObject* disp_dict;
295    DispersionVisitor* visitor = new DispersionVisitor();
296    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
297    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
298    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
299    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
300    disp_dict = PyDict_GetItemString(self->dispersion, "length");
301    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
302    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
303    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
304    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
305    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
306    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
307    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
308
309       
310        // Get input and determine whether we have to supply a 1D or 2D return value.
311        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
312            PyErr_SetString(CEllipticalCylinderModelError, 
313                "CEllipticalCylinderModel.evalDistribution expects a q value.");
314                return NULL;
315        }
316    // Check params
317       
318    if(PyArray_Check(pars)==1) {
319               
320            // Length of list should 1 or 2
321            npars = pars->nd; 
322            if(npars==1) {
323                // input is a numpy array
324                if (PyArray_Check(pars)) {
325                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
326                    }
327                }else{
328                    PyErr_SetString(CEllipticalCylinderModelError, 
329                   "CEllipticalCylinderModel.evalDistribution expect numpy array of one dimension.");
330                return NULL;
331                }
332    }else if( PyList_Check(pars)==1) {
333        // Length of list should be 2 for I(qx,qy)
334            mpars = PyList_GET_SIZE(pars); 
335            if(mpars!=2) {
336                PyErr_SetString(CEllipticalCylinderModelError, 
337                        "CEllipticalCylinderModel.evalDistribution expects a list of dimension 2.");
338                return NULL;
339            }
340             qx = PyList_GET_ITEM(pars,0);
341             qy = PyList_GET_ITEM(pars,1);
342             if (PyArray_Check(qx) && PyArray_Check(qy)) {
343                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
344                           (PyArrayObject*)qy);
345                 }else{
346                    PyErr_SetString(CEllipticalCylinderModelError, 
347                   "CEllipticalCylinderModel.evalDistribution expect 2 numpy arrays in list.");
348                return NULL;
349             }
350        }else{
351            PyErr_SetString(CEllipticalCylinderModelError, 
352                   "CEllipticalCylinderModel.evalDistribution couln't be run.");
353            return NULL;
354        }
355}
356
357/**
358 * Function to call to evaluate model
359 * @param args: input q or [q,phi]
360 * @return: function value
361 */
362static PyObject * run(CEllipticalCylinderModel *self, PyObject *args) {
363        double q_value, phi_value;
364        PyObject* pars;
365        int npars;
366       
367        // Get parameters
368       
369            // Reader parameter dictionary
370    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
371    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
372    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
373    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
374    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
375    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
376    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
377    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
378    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
379    // Read in dispersion parameters
380    PyObject* disp_dict;
381    DispersionVisitor* visitor = new DispersionVisitor();
382    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
383    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
384    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
385    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
386    disp_dict = PyDict_GetItemString(self->dispersion, "length");
387    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
388    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
389    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
390    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
391    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
392    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
393    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
394
395       
396        // Get input and determine whether we have to supply a 1D or 2D return value.
397        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
398            PyErr_SetString(CEllipticalCylinderModelError, 
399                "CEllipticalCylinderModel.run expects a q value.");
400                return NULL;
401        }
402         
403        // Check params
404        if( PyList_Check(pars)==1) {
405               
406                // Length of list should be 2 for I(q,phi)
407            npars = PyList_GET_SIZE(pars); 
408            if(npars!=2) {
409                PyErr_SetString(CEllipticalCylinderModelError, 
410                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
411                return NULL;
412            }
413            // We have a vector q, get the q and phi values at which
414            // to evaluate I(q,phi)
415            q_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
416            phi_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
417            // Skip zero
418            if (q_value==0) {
419                return Py_BuildValue("d",0.0);
420            }
421                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
422
423        } else {
424
425                // We have a scalar q, we will evaluate I(q)
426                q_value = CEllipticalCylinderModel_readDouble(pars);           
427               
428                return Py_BuildValue("d",(*(self->model))(q_value));
429        }       
430}
431
432/**
433 * Function to call to evaluate model in cartesian coordinates
434 * @param args: input q or [qx, qy]]
435 * @return: function value
436 */
437static PyObject * runXY(CEllipticalCylinderModel *self, PyObject *args) {
438        double qx_value, qy_value;
439        PyObject* pars;
440        int npars;
441       
442        // Get parameters
443       
444            // Reader parameter dictionary
445    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
446    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
447    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
448    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
449    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
450    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
451    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
452    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
453    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
454    // Read in dispersion parameters
455    PyObject* disp_dict;
456    DispersionVisitor* visitor = new DispersionVisitor();
457    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
458    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
459    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
460    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
461    disp_dict = PyDict_GetItemString(self->dispersion, "length");
462    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
463    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
464    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
465    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
466    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
467    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
468    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
469
470       
471        // Get input and determine whether we have to supply a 1D or 2D return value.
472        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
473            PyErr_SetString(CEllipticalCylinderModelError, 
474                "CEllipticalCylinderModel.run expects a q value.");
475                return NULL;
476        }
477         
478        // Check params
479        if( PyList_Check(pars)==1) {
480               
481                // Length of list should be 2 for I(qx, qy))
482            npars = PyList_GET_SIZE(pars); 
483            if(npars!=2) {
484                PyErr_SetString(CEllipticalCylinderModelError, 
485                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
486                return NULL;
487            }
488            // We have a vector q, get the qx and qy values at which
489            // to evaluate I(qx,qy)
490            qx_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
491            qy_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
492            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
493
494        } else {
495
496                // We have a scalar q, we will evaluate I(q)
497                qx_value = CEllipticalCylinderModel_readDouble(pars);           
498               
499                return Py_BuildValue("d",(*(self->model))(qx_value));
500        }       
501}
502
503static PyObject * reset(CEllipticalCylinderModel *self, PyObject *args) {
504   
505
506    return Py_BuildValue("d",0.0);
507}
508
509static PyObject * set_dispersion(CEllipticalCylinderModel *self, PyObject *args) {
510        PyObject * disp;
511        const char * par_name;
512
513        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
514            PyErr_SetString(CEllipticalCylinderModelError,
515                "CEllipticalCylinderModel.set_dispersion expects a DispersionModel object.");
516                return NULL;
517        }
518        void *temp = PyCObject_AsVoidPtr(disp);
519        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
520
521
522        // Ugliness necessary to go from python to C
523            // TODO: refactor this
524    if (!strcmp(par_name, "r_minor")) {
525        self->model->r_minor.dispersion = dispersion;
526    } else    if (!strcmp(par_name, "r_ratio")) {
527        self->model->r_ratio.dispersion = dispersion;
528    } else    if (!strcmp(par_name, "length")) {
529        self->model->length.dispersion = dispersion;
530    } else    if (!strcmp(par_name, "cyl_theta")) {
531        self->model->cyl_theta.dispersion = dispersion;
532    } else    if (!strcmp(par_name, "cyl_phi")) {
533        self->model->cyl_phi.dispersion = dispersion;
534    } else    if (!strcmp(par_name, "cyl_psi")) {
535        self->model->cyl_psi.dispersion = dispersion;
536    } else {
537            PyErr_SetString(CEllipticalCylinderModelError,
538                "CEllipticalCylinderModel.set_dispersion expects a valid parameter name.");
539                return NULL;
540        }
541
542        DispersionVisitor* visitor = new DispersionVisitor();
543        PyObject * disp_dict = PyDict_New();
544        dispersion->accept_as_source(visitor, dispersion, disp_dict);
545        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
546    return Py_BuildValue("i",1);
547}
548
549
550static PyMethodDef CEllipticalCylinderModel_methods[] = {
551    {"run",      (PyCFunction)run     , METH_VARARGS,
552      "Evaluate the model at a given Q or Q, phi"},
553    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
554      "Evaluate the model at a given Q or Qx, Qy"},
555     
556    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
557      "Evaluate the model at a given Q or Qx, Qy vector "},
558    {"reset",    (PyCFunction)reset   , METH_VARARGS,
559      "Reset pair correlation"},
560    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
561      "Set the dispersion model for a given parameter"},
562   {NULL}
563};
564
565static PyTypeObject CEllipticalCylinderModelType = {
566    PyObject_HEAD_INIT(NULL)
567    0,                         /*ob_size*/
568    "CEllipticalCylinderModel",             /*tp_name*/
569    sizeof(CEllipticalCylinderModel),             /*tp_basicsize*/
570    0,                         /*tp_itemsize*/
571    (destructor)CEllipticalCylinderModel_dealloc, /*tp_dealloc*/
572    0,                         /*tp_print*/
573    0,                         /*tp_getattr*/
574    0,                         /*tp_setattr*/
575    0,                         /*tp_compare*/
576    0,                         /*tp_repr*/
577    0,                         /*tp_as_number*/
578    0,                         /*tp_as_sequence*/
579    0,                         /*tp_as_mapping*/
580    0,                         /*tp_hash */
581    0,                         /*tp_call*/
582    0,                         /*tp_str*/
583    0,                         /*tp_getattro*/
584    0,                         /*tp_setattro*/
585    0,                         /*tp_as_buffer*/
586    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
587    "CEllipticalCylinderModel objects",           /* tp_doc */
588    0,                         /* tp_traverse */
589    0,                         /* tp_clear */
590    0,                         /* tp_richcompare */
591    0,                         /* tp_weaklistoffset */
592    0,                         /* tp_iter */
593    0,                         /* tp_iternext */
594    CEllipticalCylinderModel_methods,             /* tp_methods */
595    CEllipticalCylinderModel_members,             /* tp_members */
596    0,                         /* tp_getset */
597    0,                         /* tp_base */
598    0,                         /* tp_dict */
599    0,                         /* tp_descr_get */
600    0,                         /* tp_descr_set */
601    0,                         /* tp_dictoffset */
602    (initproc)CEllipticalCylinderModel_init,      /* tp_init */
603    0,                         /* tp_alloc */
604    CEllipticalCylinderModel_new,                 /* tp_new */
605};
606
607
608//static PyMethodDef module_methods[] = {
609//    {NULL}
610//};
611
612/**
613 * Function used to add the model class to a module
614 * @param module: module to add the class to
615 */ 
616void addCEllipticalCylinderModel(PyObject *module) {
617        PyObject *d;
618       
619    if (PyType_Ready(&CEllipticalCylinderModelType) < 0)
620        return;
621
622    Py_INCREF(&CEllipticalCylinderModelType);
623    PyModule_AddObject(module, "CEllipticalCylinderModel", (PyObject *)&CEllipticalCylinderModelType);
624   
625    d = PyModule_GetDict(module);
626    CEllipticalCylinderModelError = PyErr_NewException("CEllipticalCylinderModel.error", NULL, NULL);
627    PyDict_SetItemString(d, "CEllipticalCylinderModelError", CEllipticalCylinderModelError);
628}
629
Note: See TracBrowser for help on using the repository browser.