source: sasview/sansmodels/src/sans/models/c_models/CEllipticalCylinderModel.cpp @ 3080527

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 3080527 was 3080527, checked in by Jae Cho <jhjcho@…>, 14 years ago

changed classtemplate for 2d evaluation from matrix form to 1d array form

  • Property mode set to 100644
File size: 26.7 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipticalCylinderModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY elliptical_cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "elliptical_cylinder.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipticalCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipticalCylinderModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipticalCylinderModel;
57
58
59static void
60CEllipticalCylinderModel_dealloc(CEllipticalCylinderModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipticalCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipticalCylinderModel *self;
75   
76    self = (CEllipticalCylinderModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipticalCylinderModel_init(CEllipticalCylinderModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipticalCylinderModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000));
93        PyDict_SetItemString(self->params,"cyl_psi",Py_BuildValue("d",0.000000));
94        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000));
95        PyDict_SetItemString(self->params,"r_minor",Py_BuildValue("d",20.000000));
96        PyDict_SetItemString(self->params,"cyl_theta",Py_BuildValue("d",1.570000));
97        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000));
98        PyDict_SetItemString(self->params,"r_ratio",Py_BuildValue("d",1.500000));
99        PyDict_SetItemString(self->params,"contrast",Py_BuildValue("d",0.000003));
100        PyDict_SetItemString(self->params,"cyl_phi",Py_BuildValue("d",0.000000));
101        // Initialize dispersion / averaging parameter dict
102        DispersionVisitor* visitor = new DispersionVisitor();
103        PyObject * disp_dict;
104        disp_dict = PyDict_New();
105        self->model->r_minor.dispersion->accept_as_source(visitor, self->model->r_minor.dispersion, disp_dict);
106        PyDict_SetItemString(self->dispersion, "r_minor", disp_dict);
107        disp_dict = PyDict_New();
108        self->model->r_ratio.dispersion->accept_as_source(visitor, self->model->r_ratio.dispersion, disp_dict);
109        PyDict_SetItemString(self->dispersion, "r_ratio", disp_dict);
110        disp_dict = PyDict_New();
111        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
112        PyDict_SetItemString(self->dispersion, "length", disp_dict);
113        disp_dict = PyDict_New();
114        self->model->cyl_theta.dispersion->accept_as_source(visitor, self->model->cyl_theta.dispersion, disp_dict);
115        PyDict_SetItemString(self->dispersion, "cyl_theta", disp_dict);
116        disp_dict = PyDict_New();
117        self->model->cyl_phi.dispersion->accept_as_source(visitor, self->model->cyl_phi.dispersion, disp_dict);
118        PyDict_SetItemString(self->dispersion, "cyl_phi", disp_dict);
119        disp_dict = PyDict_New();
120        self->model->cyl_psi.dispersion->accept_as_source(visitor, self->model->cyl_psi.dispersion, disp_dict);
121        PyDict_SetItemString(self->dispersion, "cyl_psi", disp_dict);
122
123
124         
125        // Create empty log
126        self->log = PyDict_New();
127       
128       
129
130    }
131    return 0;
132}
133
134static PyMemberDef CEllipticalCylinderModel_members[] = {
135    {"params", T_OBJECT, offsetof(CEllipticalCylinderModel, params), 0,
136     "Parameters"},
137        {"dispersion", T_OBJECT, offsetof(CEllipticalCylinderModel, dispersion), 0,
138          "Dispersion parameters"},     
139    {"log", T_OBJECT, offsetof(CEllipticalCylinderModel, log), 0,
140     "Log"},
141    {NULL}  /* Sentinel */
142};
143
144/** Read double from PyObject
145    @param p PyObject
146    @return double
147*/
148double CEllipticalCylinderModel_readDouble(PyObject *p) {
149    if (PyFloat_Check(p)==1) {
150        return (double)(((PyFloatObject *)(p))->ob_fval);
151    } else if (PyInt_Check(p)==1) {
152        return (double)(((PyIntObject *)(p))->ob_ival);
153    } else if (PyLong_Check(p)==1) {
154        return (double)PyLong_AsLong(p);
155    } else {
156        return 0.0;
157    }
158}
159/**
160 * Function to call to evaluate model
161 * @param args: input numpy array q[]
162 * @return: numpy array object
163 */
164 
165static PyObject *evaluateOneDim(EllipticalCylinderModel* model, PyArrayObject *q){
166    PyArrayObject *result;
167   
168    // Check validity of array q , q must be of dimension 1, an array of double
169    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
170    {
171        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
172        //PyErr_SetString(PyExc_ValueError , message);
173        return NULL;
174    }
175    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
176                                                                                  PyArray_DOUBLE);
177        if (result == NULL) {
178        const char * message= "Could not create result ";
179        PyErr_SetString(PyExc_RuntimeError , message);
180                return NULL;
181        }
182         for (int i = 0; i < q->dimensions[0]; i++){
183      double q_value  = *(double *)(q->data + i*q->strides[0]);
184      double *result_value = (double *)(result->data + i*result->strides[0]);
185      *result_value =(*model)(q_value);
186        }
187    return PyArray_Return(result); 
188 }
189
190 /**
191 * Function to call to evaluate model
192 * @param args: input numpy array  [x[],y[]]
193 * @return: numpy array object
194 */
195 static PyObject * evaluateTwoDimXY( EllipticalCylinderModel* model, 
196                              PyArrayObject *x, PyArrayObject *y)
197 {
198    PyArrayObject *result;
199    int i,j, x_len, y_len, dims[1];
200    //check validity of input vectors
201    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
202        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
203        || y->dimensions[0] != x->dimensions[0]){
204        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
205        PyErr_SetString(PyExc_ValueError , message); 
206        return NULL;
207    }
208   
209        if (PyArray_Check(x) && PyArray_Check(y)) {
210               
211            x_len = dims[0]= x->dimensions[0];
212        y_len = dims[0]= y->dimensions[0];
213           
214            // Make a new double matrix of same dims
215        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
216        if (result == NULL){
217            const char * message= "Could not create result ";
218        PyErr_SetString(PyExc_RuntimeError , message);
219            return NULL;
220            }
221       
222        /* Do the calculation. */
223        for ( i=0; i< x_len; i++) {
224            double x_value = *(double *)(x->data + i*x->strides[0]);
225                    double y_value = *(double *)(y->data + i*y->strides[0]);
226                        double *result_value = (double *)(result->data +
227                              i*result->strides[0]);
228                        *result_value = (*model)(x_value, y_value);
229        }           
230        return PyArray_Return(result); 
231       
232        }else{
233                    PyErr_SetString(CEllipticalCylinderModelError, 
234                   "CEllipticalCylinderModel.evaluateTwoDimXY couldn't run.");
235                return NULL;
236                }       
237}
238/**
239 *  evalDistribution function evaluate a model function with input vector
240 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
241 *
242 */ 
243static PyObject * evalDistribution(CEllipticalCylinderModel *self, PyObject *args){
244        PyObject *qx, *qy;
245        PyArrayObject * pars;
246        int npars ,mpars;
247       
248        // Get parameters
249       
250            // Reader parameter dictionary
251    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
252    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
253    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
254    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
255    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
256    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
257    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
258    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
259    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
260    // Read in dispersion parameters
261    PyObject* disp_dict;
262    DispersionVisitor* visitor = new DispersionVisitor();
263    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
264    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
265    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
266    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
267    disp_dict = PyDict_GetItemString(self->dispersion, "length");
268    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
269    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
270    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
271    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
272    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
273    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
274    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
275
276       
277        // Get input and determine whether we have to supply a 1D or 2D return value.
278        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
279            PyErr_SetString(CEllipticalCylinderModelError, 
280                "CEllipticalCylinderModel.evalDistribution expects a q value.");
281                return NULL;
282        }
283    // Check params
284       
285    if(PyArray_Check(pars)==1) {
286               
287            // Length of list should 1 or 2
288            npars = pars->nd; 
289            if(npars==1) {
290                // input is a numpy array
291                if (PyArray_Check(pars)) {
292                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
293                    }
294                }else{
295                    PyErr_SetString(CEllipticalCylinderModelError, 
296                   "CEllipticalCylinderModel.evalDistribution expect numpy array of one dimension.");
297                return NULL;
298                }
299    }else if( PyList_Check(pars)==1) {
300        // Length of list should be 2 for I(qx,qy)
301            mpars = PyList_GET_SIZE(pars); 
302            if(mpars!=2) {
303                PyErr_SetString(CEllipticalCylinderModelError, 
304                        "CEllipticalCylinderModel.evalDistribution expects a list of dimension 2.");
305                return NULL;
306            }
307             qx = PyList_GET_ITEM(pars,0);
308             qy = PyList_GET_ITEM(pars,1);
309             if (PyArray_Check(qx) && PyArray_Check(qy)) {
310                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
311                           (PyArrayObject*)qy);
312                 }else{
313                    PyErr_SetString(CEllipticalCylinderModelError, 
314                   "CEllipticalCylinderModel.evalDistribution expect 2 numpy arrays in list.");
315                return NULL;
316             }
317        }
318        PyErr_SetString(CEllipticalCylinderModelError, 
319                   "CEllipticalCylinderModel.evalDistribution couln't be run.");
320        return NULL;
321       
322}
323
324/**
325 * Function to call to evaluate model
326 * @param args: input q or [q,phi]
327 * @return: function value
328 */
329static PyObject * run(CEllipticalCylinderModel *self, PyObject *args) {
330        double q_value, phi_value;
331        PyObject* pars;
332        int npars;
333       
334        // Get parameters
335       
336            // Reader parameter dictionary
337    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
338    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
339    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
340    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
341    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
342    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
343    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
344    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
345    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
346    // Read in dispersion parameters
347    PyObject* disp_dict;
348    DispersionVisitor* visitor = new DispersionVisitor();
349    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
350    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
351    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
352    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
353    disp_dict = PyDict_GetItemString(self->dispersion, "length");
354    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
355    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
356    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
357    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
358    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
359    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
360    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
361
362       
363        // Get input and determine whether we have to supply a 1D or 2D return value.
364        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
365            PyErr_SetString(CEllipticalCylinderModelError, 
366                "CEllipticalCylinderModel.run expects a q value.");
367                return NULL;
368        }
369         
370        // Check params
371        if( PyList_Check(pars)==1) {
372               
373                // Length of list should be 2 for I(q,phi)
374            npars = PyList_GET_SIZE(pars); 
375            if(npars!=2) {
376                PyErr_SetString(CEllipticalCylinderModelError, 
377                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
378                return NULL;
379            }
380            // We have a vector q, get the q and phi values at which
381            // to evaluate I(q,phi)
382            q_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
383            phi_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
384            // Skip zero
385            if (q_value==0) {
386                return Py_BuildValue("d",0.0);
387            }
388                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
389
390        } else {
391
392                // We have a scalar q, we will evaluate I(q)
393                q_value = CEllipticalCylinderModel_readDouble(pars);           
394               
395                return Py_BuildValue("d",(*(self->model))(q_value));
396        }       
397}
398/**
399 * Function to call to calculate_ER
400 * @return: effective radius value
401 */
402static PyObject * calculate_ER(CEllipticalCylinderModel *self) {
403
404        PyObject* pars;
405        int npars;
406       
407        // Get parameters
408       
409            // Reader parameter dictionary
410    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
411    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
412    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
413    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
414    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
415    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
416    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
417    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
418    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
419    // Read in dispersion parameters
420    PyObject* disp_dict;
421    DispersionVisitor* visitor = new DispersionVisitor();
422    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
423    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
424    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
425    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
426    disp_dict = PyDict_GetItemString(self->dispersion, "length");
427    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
428    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
429    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
430    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
431    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
432    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
433    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
434
435               
436        return Py_BuildValue("d",(*(self->model)).calculate_ER());
437
438}
439/**
440 * Function to call to evaluate model in cartesian coordinates
441 * @param args: input q or [qx, qy]]
442 * @return: function value
443 */
444static PyObject * runXY(CEllipticalCylinderModel *self, PyObject *args) {
445        double qx_value, qy_value;
446        PyObject* pars;
447        int npars;
448       
449        // Get parameters
450       
451            // Reader parameter dictionary
452    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
453    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
454    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
455    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
456    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
457    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
458    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
459    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
460    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
461    // Read in dispersion parameters
462    PyObject* disp_dict;
463    DispersionVisitor* visitor = new DispersionVisitor();
464    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
465    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
466    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
467    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
468    disp_dict = PyDict_GetItemString(self->dispersion, "length");
469    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
470    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
471    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
472    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
473    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
474    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
475    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
476
477       
478        // Get input and determine whether we have to supply a 1D or 2D return value.
479        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
480            PyErr_SetString(CEllipticalCylinderModelError, 
481                "CEllipticalCylinderModel.run expects a q value.");
482                return NULL;
483        }
484         
485        // Check params
486        if( PyList_Check(pars)==1) {
487               
488                // Length of list should be 2 for I(qx, qy))
489            npars = PyList_GET_SIZE(pars); 
490            if(npars!=2) {
491                PyErr_SetString(CEllipticalCylinderModelError, 
492                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
493                return NULL;
494            }
495            // We have a vector q, get the qx and qy values at which
496            // to evaluate I(qx,qy)
497            qx_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
498            qy_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
499            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
500
501        } else {
502
503                // We have a scalar q, we will evaluate I(q)
504                qx_value = CEllipticalCylinderModel_readDouble(pars);           
505               
506                return Py_BuildValue("d",(*(self->model))(qx_value));
507        }       
508}
509
510static PyObject * reset(CEllipticalCylinderModel *self, PyObject *args) {
511   
512
513    return Py_BuildValue("d",0.0);
514}
515
516static PyObject * set_dispersion(CEllipticalCylinderModel *self, PyObject *args) {
517        PyObject * disp;
518        const char * par_name;
519
520        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
521            PyErr_SetString(CEllipticalCylinderModelError,
522                "CEllipticalCylinderModel.set_dispersion expects a DispersionModel object.");
523                return NULL;
524        }
525        void *temp = PyCObject_AsVoidPtr(disp);
526        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
527
528
529        // Ugliness necessary to go from python to C
530            // TODO: refactor this
531    if (!strcmp(par_name, "r_minor")) {
532        self->model->r_minor.dispersion = dispersion;
533    } else    if (!strcmp(par_name, "r_ratio")) {
534        self->model->r_ratio.dispersion = dispersion;
535    } else    if (!strcmp(par_name, "length")) {
536        self->model->length.dispersion = dispersion;
537    } else    if (!strcmp(par_name, "cyl_theta")) {
538        self->model->cyl_theta.dispersion = dispersion;
539    } else    if (!strcmp(par_name, "cyl_phi")) {
540        self->model->cyl_phi.dispersion = dispersion;
541    } else    if (!strcmp(par_name, "cyl_psi")) {
542        self->model->cyl_psi.dispersion = dispersion;
543    } else {
544            PyErr_SetString(CEllipticalCylinderModelError,
545                "CEllipticalCylinderModel.set_dispersion expects a valid parameter name.");
546                return NULL;
547        }
548
549        DispersionVisitor* visitor = new DispersionVisitor();
550        PyObject * disp_dict = PyDict_New();
551        dispersion->accept_as_source(visitor, dispersion, disp_dict);
552        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
553    return Py_BuildValue("i",1);
554}
555
556
557static PyMethodDef CEllipticalCylinderModel_methods[] = {
558    {"run",      (PyCFunction)run     , METH_VARARGS,
559      "Evaluate the model at a given Q or Q, phi"},
560    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
561      "Evaluate the model at a given Q or Qx, Qy"},
562    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
563      "Evaluate the model at a given Q or Q, phi"},
564     
565    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
566      "Evaluate the model at a given Q or Qx, Qy vector "},
567    {"reset",    (PyCFunction)reset   , METH_VARARGS,
568      "Reset pair correlation"},
569    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
570      "Set the dispersion model for a given parameter"},
571   {NULL}
572};
573
574static PyTypeObject CEllipticalCylinderModelType = {
575    PyObject_HEAD_INIT(NULL)
576    0,                         /*ob_size*/
577    "CEllipticalCylinderModel",             /*tp_name*/
578    sizeof(CEllipticalCylinderModel),             /*tp_basicsize*/
579    0,                         /*tp_itemsize*/
580    (destructor)CEllipticalCylinderModel_dealloc, /*tp_dealloc*/
581    0,                         /*tp_print*/
582    0,                         /*tp_getattr*/
583    0,                         /*tp_setattr*/
584    0,                         /*tp_compare*/
585    0,                         /*tp_repr*/
586    0,                         /*tp_as_number*/
587    0,                         /*tp_as_sequence*/
588    0,                         /*tp_as_mapping*/
589    0,                         /*tp_hash */
590    0,                         /*tp_call*/
591    0,                         /*tp_str*/
592    0,                         /*tp_getattro*/
593    0,                         /*tp_setattro*/
594    0,                         /*tp_as_buffer*/
595    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
596    "CEllipticalCylinderModel objects",           /* tp_doc */
597    0,                         /* tp_traverse */
598    0,                         /* tp_clear */
599    0,                         /* tp_richcompare */
600    0,                         /* tp_weaklistoffset */
601    0,                         /* tp_iter */
602    0,                         /* tp_iternext */
603    CEllipticalCylinderModel_methods,             /* tp_methods */
604    CEllipticalCylinderModel_members,             /* tp_members */
605    0,                         /* tp_getset */
606    0,                         /* tp_base */
607    0,                         /* tp_dict */
608    0,                         /* tp_descr_get */
609    0,                         /* tp_descr_set */
610    0,                         /* tp_dictoffset */
611    (initproc)CEllipticalCylinderModel_init,      /* tp_init */
612    0,                         /* tp_alloc */
613    CEllipticalCylinderModel_new,                 /* tp_new */
614};
615
616
617//static PyMethodDef module_methods[] = {
618//    {NULL}
619//};
620
621/**
622 * Function used to add the model class to a module
623 * @param module: module to add the class to
624 */ 
625void addCEllipticalCylinderModel(PyObject *module) {
626        PyObject *d;
627       
628    if (PyType_Ready(&CEllipticalCylinderModelType) < 0)
629        return;
630
631    Py_INCREF(&CEllipticalCylinderModelType);
632    PyModule_AddObject(module, "CEllipticalCylinderModel", (PyObject *)&CEllipticalCylinderModelType);
633   
634    d = PyModule_GetDict(module);
635    CEllipticalCylinderModelError = PyErr_NewException("CEllipticalCylinderModel.error", NULL, NULL);
636    PyDict_SetItemString(d, "CEllipticalCylinderModelError", CEllipticalCylinderModelError);
637}
638
Note: See TracBrowser for help on using the repository browser.