source: sasview/sansmodels/src/sans/models/c_models/CEllipticalCylinderModel.cpp @ 30ccad1

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 30ccad1 was 4628e31, checked in by Jae Cho <jhjcho@…>, 14 years ago

changed the unit of angles into degrees

  • Property mode set to 100644
File size: 27.2 KB
RevLine 
[0f5bc9f]1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipticalCylinderModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY elliptical_cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
[9bd69098]24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
[0f5bc9f]26 
27extern "C" {
28#include <Python.h>
[9bd69098]29#include <arrayobject.h>
[0f5bc9f]30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "elliptical_cylinder.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipticalCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipticalCylinderModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipticalCylinderModel;
57
58
59static void
60CEllipticalCylinderModel_dealloc(CEllipticalCylinderModel* self)
61{
[71e2de7]62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
[0f5bc9f]66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipticalCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipticalCylinderModel *self;
75   
76    self = (CEllipticalCylinderModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipticalCylinderModel_init(CEllipticalCylinderModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipticalCylinderModel();
90       
91        // Initialize parameter dictionary
[35aface]92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
93        PyDict_SetItemString(self->params,"sldCyl",Py_BuildValue("d",0.000004000000));
94        PyDict_SetItemString(self->params,"cyl_psi",Py_BuildValue("d",0.000000000000));
95        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000000000));
96        PyDict_SetItemString(self->params,"r_minor",Py_BuildValue("d",20.000000000000));
97        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000001000000));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
[4628e31]99        PyDict_SetItemString(self->params,"cyl_theta",Py_BuildValue("d",90.000000000000));
[35aface]100        PyDict_SetItemString(self->params,"r_ratio",Py_BuildValue("d",1.500000000000));
101        PyDict_SetItemString(self->params,"cyl_phi",Py_BuildValue("d",0.000000000000));
[0f5bc9f]102        // Initialize dispersion / averaging parameter dict
103        DispersionVisitor* visitor = new DispersionVisitor();
104        PyObject * disp_dict;
105        disp_dict = PyDict_New();
106        self->model->r_minor.dispersion->accept_as_source(visitor, self->model->r_minor.dispersion, disp_dict);
107        PyDict_SetItemString(self->dispersion, "r_minor", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->r_ratio.dispersion->accept_as_source(visitor, self->model->r_ratio.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "r_ratio", disp_dict);
111        disp_dict = PyDict_New();
112        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "length", disp_dict);
114        disp_dict = PyDict_New();
115        self->model->cyl_theta.dispersion->accept_as_source(visitor, self->model->cyl_theta.dispersion, disp_dict);
116        PyDict_SetItemString(self->dispersion, "cyl_theta", disp_dict);
117        disp_dict = PyDict_New();
118        self->model->cyl_phi.dispersion->accept_as_source(visitor, self->model->cyl_phi.dispersion, disp_dict);
119        PyDict_SetItemString(self->dispersion, "cyl_phi", disp_dict);
120        disp_dict = PyDict_New();
121        self->model->cyl_psi.dispersion->accept_as_source(visitor, self->model->cyl_psi.dispersion, disp_dict);
122        PyDict_SetItemString(self->dispersion, "cyl_psi", disp_dict);
123
124
125         
126        // Create empty log
127        self->log = PyDict_New();
128       
129       
130
131    }
132    return 0;
133}
134
135static PyMemberDef CEllipticalCylinderModel_members[] = {
136    {"params", T_OBJECT, offsetof(CEllipticalCylinderModel, params), 0,
137     "Parameters"},
138        {"dispersion", T_OBJECT, offsetof(CEllipticalCylinderModel, dispersion), 0,
139          "Dispersion parameters"},     
140    {"log", T_OBJECT, offsetof(CEllipticalCylinderModel, log), 0,
141     "Log"},
142    {NULL}  /* Sentinel */
143};
144
145/** Read double from PyObject
146    @param p PyObject
147    @return double
148*/
149double CEllipticalCylinderModel_readDouble(PyObject *p) {
150    if (PyFloat_Check(p)==1) {
151        return (double)(((PyFloatObject *)(p))->ob_fval);
152    } else if (PyInt_Check(p)==1) {
153        return (double)(((PyIntObject *)(p))->ob_ival);
154    } else if (PyLong_Check(p)==1) {
155        return (double)PyLong_AsLong(p);
156    } else {
157        return 0.0;
158    }
159}
[9bd69098]160/**
161 * Function to call to evaluate model
162 * @param args: input numpy array q[]
163 * @return: numpy array object
164 */
165 
166static PyObject *evaluateOneDim(EllipticalCylinderModel* model, PyArrayObject *q){
167    PyArrayObject *result;
168   
169    // Check validity of array q , q must be of dimension 1, an array of double
170    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
171    {
172        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
173        //PyErr_SetString(PyExc_ValueError , message);
174        return NULL;
175    }
176    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
177                                                                                  PyArray_DOUBLE);
178        if (result == NULL) {
179        const char * message= "Could not create result ";
180        PyErr_SetString(PyExc_RuntimeError , message);
181                return NULL;
182        }
183         for (int i = 0; i < q->dimensions[0]; i++){
184      double q_value  = *(double *)(q->data + i*q->strides[0]);
185      double *result_value = (double *)(result->data + i*result->strides[0]);
186      *result_value =(*model)(q_value);
187        }
188    return PyArray_Return(result); 
189 }
190
191 /**
192 * Function to call to evaluate model
193 * @param args: input numpy array  [x[],y[]]
194 * @return: numpy array object
195 */
196 static PyObject * evaluateTwoDimXY( EllipticalCylinderModel* model, 
197                              PyArrayObject *x, PyArrayObject *y)
198 {
199    PyArrayObject *result;
[3080527]200    int i,j, x_len, y_len, dims[1];
[9bd69098]201    //check validity of input vectors
[3080527]202    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
203        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
204        || y->dimensions[0] != x->dimensions[0]){
[9bd69098]205        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
206        PyErr_SetString(PyExc_ValueError , message); 
207        return NULL;
208    }
209   
210        if (PyArray_Check(x) && PyArray_Check(y)) {
[a8d6888]211               
[3080527]212            x_len = dims[0]= x->dimensions[0];
[9ce41c6]213        y_len = dims[0]= y->dimensions[0];
[9bd69098]214           
215            // Make a new double matrix of same dims
[3080527]216        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
[9bd69098]217        if (result == NULL){
218            const char * message= "Could not create result ";
219        PyErr_SetString(PyExc_RuntimeError , message);
220            return NULL;
221            }
222       
223        /* Do the calculation. */
[3080527]224        for ( i=0; i< x_len; i++) {
225            double x_value = *(double *)(x->data + i*x->strides[0]);
226                    double y_value = *(double *)(y->data + i*y->strides[0]);
227                        double *result_value = (double *)(result->data +
228                              i*result->strides[0]);
229                        *result_value = (*model)(x_value, y_value);
230        }           
[9bd69098]231        return PyArray_Return(result); 
232       
233        }else{
234                    PyErr_SetString(CEllipticalCylinderModelError, 
235                   "CEllipticalCylinderModel.evaluateTwoDimXY couldn't run.");
236                return NULL;
237                }       
238}
239/**
240 *  evalDistribution function evaluate a model function with input vector
241 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
242 *
243 */ 
244static PyObject * evalDistribution(CEllipticalCylinderModel *self, PyObject *args){
245        PyObject *qx, *qy;
246        PyArrayObject * pars;
247        int npars ,mpars;
248       
249        // Get parameters
250       
251            // Reader parameter dictionary
252    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
[f10063e]253    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
[9bd69098]254    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
255    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
256    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
[f10063e]257    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[9bd69098]258    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]259    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
[9bd69098]260    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
261    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
262    // Read in dispersion parameters
263    PyObject* disp_dict;
264    DispersionVisitor* visitor = new DispersionVisitor();
265    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
266    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
267    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
268    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
269    disp_dict = PyDict_GetItemString(self->dispersion, "length");
270    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
271    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
272    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
273    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
274    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
275    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
276    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
[0f5bc9f]277
[9bd69098]278       
279        // Get input and determine whether we have to supply a 1D or 2D return value.
280        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
281            PyErr_SetString(CEllipticalCylinderModelError, 
282                "CEllipticalCylinderModel.evalDistribution expects a q value.");
283                return NULL;
284        }
285    // Check params
286       
287    if(PyArray_Check(pars)==1) {
288               
289            // Length of list should 1 or 2
290            npars = pars->nd; 
291            if(npars==1) {
292                // input is a numpy array
293                if (PyArray_Check(pars)) {
294                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
295                    }
296                }else{
297                    PyErr_SetString(CEllipticalCylinderModelError, 
298                   "CEllipticalCylinderModel.evalDistribution expect numpy array of one dimension.");
299                return NULL;
300                }
301    }else if( PyList_Check(pars)==1) {
302        // Length of list should be 2 for I(qx,qy)
303            mpars = PyList_GET_SIZE(pars); 
304            if(mpars!=2) {
305                PyErr_SetString(CEllipticalCylinderModelError, 
306                        "CEllipticalCylinderModel.evalDistribution expects a list of dimension 2.");
307                return NULL;
308            }
309             qx = PyList_GET_ITEM(pars,0);
310             qy = PyList_GET_ITEM(pars,1);
311             if (PyArray_Check(qx) && PyArray_Check(qy)) {
312                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
313                           (PyArrayObject*)qy);
314                 }else{
315                    PyErr_SetString(CEllipticalCylinderModelError, 
316                   "CEllipticalCylinderModel.evalDistribution expect 2 numpy arrays in list.");
317                return NULL;
318             }
319        }
[e0a8a3c]320        PyErr_SetString(CEllipticalCylinderModelError, 
321                   "CEllipticalCylinderModel.evalDistribution couln't be run.");
322        return NULL;
323       
[9bd69098]324}
[0f5bc9f]325
326/**
327 * Function to call to evaluate model
328 * @param args: input q or [q,phi]
329 * @return: function value
330 */
331static PyObject * run(CEllipticalCylinderModel *self, PyObject *args) {
332        double q_value, phi_value;
333        PyObject* pars;
334        int npars;
335       
336        // Get parameters
337       
338            // Reader parameter dictionary
339    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
[f10063e]340    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
[0f5bc9f]341    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
342    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
343    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
[f10063e]344    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[0f5bc9f]345    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]346    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
[0f5bc9f]347    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
348    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
349    // Read in dispersion parameters
350    PyObject* disp_dict;
351    DispersionVisitor* visitor = new DispersionVisitor();
352    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
353    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
354    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
355    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
356    disp_dict = PyDict_GetItemString(self->dispersion, "length");
357    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
358    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
359    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
360    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
361    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
362    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
363    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
364
365       
366        // Get input and determine whether we have to supply a 1D or 2D return value.
367        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
368            PyErr_SetString(CEllipticalCylinderModelError, 
369                "CEllipticalCylinderModel.run expects a q value.");
370                return NULL;
371        }
372         
373        // Check params
374        if( PyList_Check(pars)==1) {
375               
376                // Length of list should be 2 for I(q,phi)
377            npars = PyList_GET_SIZE(pars); 
378            if(npars!=2) {
379                PyErr_SetString(CEllipticalCylinderModelError, 
380                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
381                return NULL;
382            }
383            // We have a vector q, get the q and phi values at which
384            // to evaluate I(q,phi)
385            q_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
386            phi_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
387            // Skip zero
388            if (q_value==0) {
389                return Py_BuildValue("d",0.0);
390            }
391                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
392
393        } else {
394
395                // We have a scalar q, we will evaluate I(q)
396                q_value = CEllipticalCylinderModel_readDouble(pars);           
397               
398                return Py_BuildValue("d",(*(self->model))(q_value));
399        }       
400}
[5eb9154]401/**
402 * Function to call to calculate_ER
403 * @return: effective radius value
404 */
405static PyObject * calculate_ER(CEllipticalCylinderModel *self) {
[0f5bc9f]406
[5eb9154]407        PyObject* pars;
408        int npars;
409       
410        // Get parameters
411       
412            // Reader parameter dictionary
413    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
[f10063e]414    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
[5eb9154]415    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
416    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
417    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
[f10063e]418    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[5eb9154]419    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]420    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
[5eb9154]421    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
422    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
423    // Read in dispersion parameters
424    PyObject* disp_dict;
425    DispersionVisitor* visitor = new DispersionVisitor();
426    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
427    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
428    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
429    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
430    disp_dict = PyDict_GetItemString(self->dispersion, "length");
431    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
432    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
433    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
434    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
435    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
436    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
437    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
438
439               
440        return Py_BuildValue("d",(*(self->model)).calculate_ER());
441
442}
[0f5bc9f]443/**
444 * Function to call to evaluate model in cartesian coordinates
445 * @param args: input q or [qx, qy]]
446 * @return: function value
447 */
448static PyObject * runXY(CEllipticalCylinderModel *self, PyObject *args) {
449        double qx_value, qy_value;
450        PyObject* pars;
451        int npars;
452       
453        // Get parameters
454       
455            // Reader parameter dictionary
456    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
[f10063e]457    self->model->sldCyl = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldCyl") );
[0f5bc9f]458    self->model->cyl_psi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_psi") );
459    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
460    self->model->r_minor = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_minor") );
[f10063e]461    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[0f5bc9f]462    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]463    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
[0f5bc9f]464    self->model->r_ratio = PyFloat_AsDouble( PyDict_GetItemString(self->params, "r_ratio") );
465    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
466    // Read in dispersion parameters
467    PyObject* disp_dict;
468    DispersionVisitor* visitor = new DispersionVisitor();
469    disp_dict = PyDict_GetItemString(self->dispersion, "r_minor");
470    self->model->r_minor.dispersion->accept_as_destination(visitor, self->model->r_minor.dispersion, disp_dict);
471    disp_dict = PyDict_GetItemString(self->dispersion, "r_ratio");
472    self->model->r_ratio.dispersion->accept_as_destination(visitor, self->model->r_ratio.dispersion, disp_dict);
473    disp_dict = PyDict_GetItemString(self->dispersion, "length");
474    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
475    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
476    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
477    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
478    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
479    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_psi");
480    self->model->cyl_psi.dispersion->accept_as_destination(visitor, self->model->cyl_psi.dispersion, disp_dict);
481
482       
483        // Get input and determine whether we have to supply a 1D or 2D return value.
484        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
485            PyErr_SetString(CEllipticalCylinderModelError, 
486                "CEllipticalCylinderModel.run expects a q value.");
487                return NULL;
488        }
489         
490        // Check params
491        if( PyList_Check(pars)==1) {
492               
493                // Length of list should be 2 for I(qx, qy))
494            npars = PyList_GET_SIZE(pars); 
495            if(npars!=2) {
496                PyErr_SetString(CEllipticalCylinderModelError, 
497                        "CEllipticalCylinderModel.run expects a double or a list of dimension 2.");
498                return NULL;
499            }
500            // We have a vector q, get the qx and qy values at which
501            // to evaluate I(qx,qy)
502            qx_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
503            qy_value = CEllipticalCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
504            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
505
506        } else {
507
508                // We have a scalar q, we will evaluate I(q)
509                qx_value = CEllipticalCylinderModel_readDouble(pars);           
510               
511                return Py_BuildValue("d",(*(self->model))(qx_value));
512        }       
513}
514
515static PyObject * reset(CEllipticalCylinderModel *self, PyObject *args) {
516   
517
518    return Py_BuildValue("d",0.0);
519}
520
521static PyObject * set_dispersion(CEllipticalCylinderModel *self, PyObject *args) {
522        PyObject * disp;
523        const char * par_name;
524
525        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
526            PyErr_SetString(CEllipticalCylinderModelError,
527                "CEllipticalCylinderModel.set_dispersion expects a DispersionModel object.");
528                return NULL;
529        }
530        void *temp = PyCObject_AsVoidPtr(disp);
531        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
532
533
534        // Ugliness necessary to go from python to C
535            // TODO: refactor this
536    if (!strcmp(par_name, "r_minor")) {
537        self->model->r_minor.dispersion = dispersion;
538    } else    if (!strcmp(par_name, "r_ratio")) {
539        self->model->r_ratio.dispersion = dispersion;
540    } else    if (!strcmp(par_name, "length")) {
541        self->model->length.dispersion = dispersion;
542    } else    if (!strcmp(par_name, "cyl_theta")) {
543        self->model->cyl_theta.dispersion = dispersion;
544    } else    if (!strcmp(par_name, "cyl_phi")) {
545        self->model->cyl_phi.dispersion = dispersion;
546    } else    if (!strcmp(par_name, "cyl_psi")) {
547        self->model->cyl_psi.dispersion = dispersion;
548    } else {
549            PyErr_SetString(CEllipticalCylinderModelError,
550                "CEllipticalCylinderModel.set_dispersion expects a valid parameter name.");
551                return NULL;
552        }
553
554        DispersionVisitor* visitor = new DispersionVisitor();
555        PyObject * disp_dict = PyDict_New();
556        dispersion->accept_as_source(visitor, dispersion, disp_dict);
557        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
558    return Py_BuildValue("i",1);
559}
560
561
562static PyMethodDef CEllipticalCylinderModel_methods[] = {
563    {"run",      (PyCFunction)run     , METH_VARARGS,
564      "Evaluate the model at a given Q or Q, phi"},
565    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
566      "Evaluate the model at a given Q or Qx, Qy"},
[5eb9154]567    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
568      "Evaluate the model at a given Q or Q, phi"},
[9bd69098]569     
570    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
571      "Evaluate the model at a given Q or Qx, Qy vector "},
[0f5bc9f]572    {"reset",    (PyCFunction)reset   , METH_VARARGS,
573      "Reset pair correlation"},
574    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
575      "Set the dispersion model for a given parameter"},
576   {NULL}
577};
578
579static PyTypeObject CEllipticalCylinderModelType = {
580    PyObject_HEAD_INIT(NULL)
581    0,                         /*ob_size*/
582    "CEllipticalCylinderModel",             /*tp_name*/
583    sizeof(CEllipticalCylinderModel),             /*tp_basicsize*/
584    0,                         /*tp_itemsize*/
585    (destructor)CEllipticalCylinderModel_dealloc, /*tp_dealloc*/
586    0,                         /*tp_print*/
587    0,                         /*tp_getattr*/
588    0,                         /*tp_setattr*/
589    0,                         /*tp_compare*/
590    0,                         /*tp_repr*/
591    0,                         /*tp_as_number*/
592    0,                         /*tp_as_sequence*/
593    0,                         /*tp_as_mapping*/
594    0,                         /*tp_hash */
595    0,                         /*tp_call*/
596    0,                         /*tp_str*/
597    0,                         /*tp_getattro*/
598    0,                         /*tp_setattro*/
599    0,                         /*tp_as_buffer*/
600    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
601    "CEllipticalCylinderModel objects",           /* tp_doc */
602    0,                         /* tp_traverse */
603    0,                         /* tp_clear */
604    0,                         /* tp_richcompare */
605    0,                         /* tp_weaklistoffset */
606    0,                         /* tp_iter */
607    0,                         /* tp_iternext */
608    CEllipticalCylinderModel_methods,             /* tp_methods */
609    CEllipticalCylinderModel_members,             /* tp_members */
610    0,                         /* tp_getset */
611    0,                         /* tp_base */
612    0,                         /* tp_dict */
613    0,                         /* tp_descr_get */
614    0,                         /* tp_descr_set */
615    0,                         /* tp_dictoffset */
616    (initproc)CEllipticalCylinderModel_init,      /* tp_init */
617    0,                         /* tp_alloc */
618    CEllipticalCylinderModel_new,                 /* tp_new */
619};
620
621
[9bd69098]622//static PyMethodDef module_methods[] = {
623//    {NULL}
624//};
[0f5bc9f]625
626/**
627 * Function used to add the model class to a module
628 * @param module: module to add the class to
629 */ 
630void addCEllipticalCylinderModel(PyObject *module) {
631        PyObject *d;
632       
633    if (PyType_Ready(&CEllipticalCylinderModelType) < 0)
634        return;
635
636    Py_INCREF(&CEllipticalCylinderModelType);
637    PyModule_AddObject(module, "CEllipticalCylinderModel", (PyObject *)&CEllipticalCylinderModelType);
638   
639    d = PyModule_GetDict(module);
640    CEllipticalCylinderModelError = PyErr_NewException("CEllipticalCylinderModel.error", NULL, NULL);
641    PyDict_SetItemString(d, "CEllipticalCylinderModelError", CEllipticalCylinderModelError);
642}
643
Note: See TracBrowser for help on using the repository browser.