source: sasview/sansmodels/src/sans/models/c_models/CEllipsoidModel.cpp @ d67fc8d

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since d67fc8d was 71e2de7, checked in by Gervaise Alina <gervyh@…>, 15 years ago

change destructor for models

  • Property mode set to 100644
File size: 23.3 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "ellipsoid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipsoidModel;
57
58
59static void
60CEllipsoidModel_dealloc(CEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipsoidModel *self;
75   
76    self = (CEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipsoidModel_init(CEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000));
93        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",1.570000));
94        PyDict_SetItemString(self->params,"radius_b",Py_BuildValue("d",400.000000));
95        PyDict_SetItemString(self->params,"radius_a",Py_BuildValue("d",20.000000));
96        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000));
97        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000));
98        PyDict_SetItemString(self->params,"contrast",Py_BuildValue("d",0.000003));
99        // Initialize dispersion / averaging parameter dict
100        DispersionVisitor* visitor = new DispersionVisitor();
101        PyObject * disp_dict;
102        disp_dict = PyDict_New();
103        self->model->radius_a.dispersion->accept_as_source(visitor, self->model->radius_a.dispersion, disp_dict);
104        PyDict_SetItemString(self->dispersion, "radius_a", disp_dict);
105        disp_dict = PyDict_New();
106        self->model->radius_b.dispersion->accept_as_source(visitor, self->model->radius_b.dispersion, disp_dict);
107        PyDict_SetItemString(self->dispersion, "radius_b", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
111        disp_dict = PyDict_New();
112        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
114
115
116         
117        // Create empty log
118        self->log = PyDict_New();
119       
120       
121
122    }
123    return 0;
124}
125
126static PyMemberDef CEllipsoidModel_members[] = {
127    {"params", T_OBJECT, offsetof(CEllipsoidModel, params), 0,
128     "Parameters"},
129        {"dispersion", T_OBJECT, offsetof(CEllipsoidModel, dispersion), 0,
130          "Dispersion parameters"},     
131    {"log", T_OBJECT, offsetof(CEllipsoidModel, log), 0,
132     "Log"},
133    {NULL}  /* Sentinel */
134};
135
136/** Read double from PyObject
137    @param p PyObject
138    @return double
139*/
140double CEllipsoidModel_readDouble(PyObject *p) {
141    if (PyFloat_Check(p)==1) {
142        return (double)(((PyFloatObject *)(p))->ob_fval);
143    } else if (PyInt_Check(p)==1) {
144        return (double)(((PyIntObject *)(p))->ob_ival);
145    } else if (PyLong_Check(p)==1) {
146        return (double)PyLong_AsLong(p);
147    } else {
148        return 0.0;
149    }
150}
151/**
152 * Function to call to evaluate model
153 * @param args: input numpy array q[]
154 * @return: numpy array object
155 */
156 
157static PyObject *evaluateOneDim(EllipsoidModel* model, PyArrayObject *q){
158    PyArrayObject *result;
159   
160    // Check validity of array q , q must be of dimension 1, an array of double
161    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
162    {
163        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
164        //PyErr_SetString(PyExc_ValueError , message);
165        return NULL;
166    }
167    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
168                                                                                  PyArray_DOUBLE);
169        if (result == NULL) {
170        const char * message= "Could not create result ";
171        PyErr_SetString(PyExc_RuntimeError , message);
172                return NULL;
173        }
174         for (int i = 0; i < q->dimensions[0]; i++){
175      double q_value  = *(double *)(q->data + i*q->strides[0]);
176      double *result_value = (double *)(result->data + i*result->strides[0]);
177      *result_value =(*model)(q_value);
178        }
179    return PyArray_Return(result); 
180 }
181
182 /**
183 * Function to call to evaluate model
184 * @param args: input numpy array  [x[],y[]]
185 * @return: numpy array object
186 */
187 static PyObject * evaluateTwoDimXY( EllipsoidModel* model, 
188                              PyArrayObject *x, PyArrayObject *y)
189 {
190    PyArrayObject *result;
191    int i,j, x_len, y_len, dims[2];
192    //check validity of input vectors
193    if (x->nd != 2 || x->descr->type_num != PyArray_DOUBLE
194        || y->nd != 2 || y->descr->type_num != PyArray_DOUBLE
195        || y->dimensions[1] != x->dimensions[0]){
196        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
197        PyErr_SetString(PyExc_ValueError , message); 
198        return NULL;
199    }
200   
201        if (PyArray_Check(x) && PyArray_Check(y)) {
202               
203            x_len = dims[1]= x->dimensions[1];
204        y_len = dims[0]= y->dimensions[0];
205           
206            // Make a new double matrix of same dims
207        result=(PyArrayObject *) PyArray_FromDims(2,dims,NPY_DOUBLE);
208        if (result == NULL){
209            const char * message= "Could not create result ";
210        PyErr_SetString(PyExc_RuntimeError , message);
211            return NULL;
212            }
213       
214        /* Do the calculation. */
215        for ( j=0; j< y_len; j++) {
216            for ( i=0; i< x_len; i++) {
217                double x_value = *(double *)(x->data + i*x->strides[1]);
218                    double y_value = *(double *)(y->data + j*y->strides[0]);
219                        double *result_value = (double *)(result->data +
220                              j*result->strides[0] + i*result->strides[1]);
221                        *result_value = (*model)(x_value, y_value);
222            }           
223        }
224        return PyArray_Return(result); 
225       
226        }else{
227                    PyErr_SetString(CEllipsoidModelError, 
228                   "CEllipsoidModel.evaluateTwoDimXY couldn't run.");
229                return NULL;
230                }       
231}
232/**
233 *  evalDistribution function evaluate a model function with input vector
234 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
235 *
236 */ 
237static PyObject * evalDistribution(CEllipsoidModel *self, PyObject *args){
238        PyObject *qx, *qy;
239        PyArrayObject * pars;
240        int npars ,mpars;
241       
242        // Get parameters
243       
244            // Reader parameter dictionary
245    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
246    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
247    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
248    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
249    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
250    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
251    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
252    // Read in dispersion parameters
253    PyObject* disp_dict;
254    DispersionVisitor* visitor = new DispersionVisitor();
255    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
256    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
257    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
258    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
259    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
260    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
261    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
262    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
263
264       
265        // Get input and determine whether we have to supply a 1D or 2D return value.
266        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
267            PyErr_SetString(CEllipsoidModelError, 
268                "CEllipsoidModel.evalDistribution expects a q value.");
269                return NULL;
270        }
271    // Check params
272       
273    if(PyArray_Check(pars)==1) {
274               
275            // Length of list should 1 or 2
276            npars = pars->nd; 
277            if(npars==1) {
278                // input is a numpy array
279                if (PyArray_Check(pars)) {
280                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
281                    }
282                }else{
283                    PyErr_SetString(CEllipsoidModelError, 
284                   "CEllipsoidModel.evalDistribution expect numpy array of one dimension.");
285                return NULL;
286                }
287    }else if( PyList_Check(pars)==1) {
288        // Length of list should be 2 for I(qx,qy)
289            mpars = PyList_GET_SIZE(pars); 
290            if(mpars!=2) {
291                PyErr_SetString(CEllipsoidModelError, 
292                        "CEllipsoidModel.evalDistribution expects a list of dimension 2.");
293                return NULL;
294            }
295             qx = PyList_GET_ITEM(pars,0);
296             qy = PyList_GET_ITEM(pars,1);
297             if (PyArray_Check(qx) && PyArray_Check(qy)) {
298                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
299                           (PyArrayObject*)qy);
300                 }else{
301                    PyErr_SetString(CEllipsoidModelError, 
302                   "CEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
303                return NULL;
304             }
305        }
306        PyErr_SetString(CEllipsoidModelError, 
307                   "CEllipsoidModel.evalDistribution couln't be run.");
308        return NULL;
309       
310}
311
312/**
313 * Function to call to evaluate model
314 * @param args: input q or [q,phi]
315 * @return: function value
316 */
317static PyObject * run(CEllipsoidModel *self, PyObject *args) {
318        double q_value, phi_value;
319        PyObject* pars;
320        int npars;
321       
322        // Get parameters
323       
324            // Reader parameter dictionary
325    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
326    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
327    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
328    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
329    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
330    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
331    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
332    // Read in dispersion parameters
333    PyObject* disp_dict;
334    DispersionVisitor* visitor = new DispersionVisitor();
335    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
336    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
337    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
338    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
339    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
340    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
341    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
342    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
343
344       
345        // Get input and determine whether we have to supply a 1D or 2D return value.
346        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
347            PyErr_SetString(CEllipsoidModelError, 
348                "CEllipsoidModel.run expects a q value.");
349                return NULL;
350        }
351         
352        // Check params
353        if( PyList_Check(pars)==1) {
354               
355                // Length of list should be 2 for I(q,phi)
356            npars = PyList_GET_SIZE(pars); 
357            if(npars!=2) {
358                PyErr_SetString(CEllipsoidModelError, 
359                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
360                return NULL;
361            }
362            // We have a vector q, get the q and phi values at which
363            // to evaluate I(q,phi)
364            q_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
365            phi_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
366            // Skip zero
367            if (q_value==0) {
368                return Py_BuildValue("d",0.0);
369            }
370                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
371
372        } else {
373
374                // We have a scalar q, we will evaluate I(q)
375                q_value = CEllipsoidModel_readDouble(pars);             
376               
377                return Py_BuildValue("d",(*(self->model))(q_value));
378        }       
379}
380/**
381 * Function to call to calculate_ER
382 * @return: effective radius value
383 */
384static PyObject * calculate_ER(CEllipsoidModel *self) {
385
386        PyObject* pars;
387        int npars;
388       
389        // Get parameters
390       
391            // Reader parameter dictionary
392    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
393    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
394    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
395    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
396    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
397    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
398    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
399    // Read in dispersion parameters
400    PyObject* disp_dict;
401    DispersionVisitor* visitor = new DispersionVisitor();
402    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
403    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
404    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
405    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
406    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
407    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
408    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
409    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
410
411               
412        return Py_BuildValue("d",(*(self->model)).calculate_ER());
413
414}
415/**
416 * Function to call to evaluate model in cartesian coordinates
417 * @param args: input q or [qx, qy]]
418 * @return: function value
419 */
420static PyObject * runXY(CEllipsoidModel *self, PyObject *args) {
421        double qx_value, qy_value;
422        PyObject* pars;
423        int npars;
424       
425        // Get parameters
426       
427            // Reader parameter dictionary
428    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
429    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
430    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
431    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
432    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
433    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
434    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
435    // Read in dispersion parameters
436    PyObject* disp_dict;
437    DispersionVisitor* visitor = new DispersionVisitor();
438    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
439    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
440    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
441    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
442    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
443    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
444    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
445    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
446
447       
448        // Get input and determine whether we have to supply a 1D or 2D return value.
449        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
450            PyErr_SetString(CEllipsoidModelError, 
451                "CEllipsoidModel.run expects a q value.");
452                return NULL;
453        }
454         
455        // Check params
456        if( PyList_Check(pars)==1) {
457               
458                // Length of list should be 2 for I(qx, qy))
459            npars = PyList_GET_SIZE(pars); 
460            if(npars!=2) {
461                PyErr_SetString(CEllipsoidModelError, 
462                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
463                return NULL;
464            }
465            // We have a vector q, get the qx and qy values at which
466            // to evaluate I(qx,qy)
467            qx_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
468            qy_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
469            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
470
471        } else {
472
473                // We have a scalar q, we will evaluate I(q)
474                qx_value = CEllipsoidModel_readDouble(pars);           
475               
476                return Py_BuildValue("d",(*(self->model))(qx_value));
477        }       
478}
479
480static PyObject * reset(CEllipsoidModel *self, PyObject *args) {
481   
482
483    return Py_BuildValue("d",0.0);
484}
485
486static PyObject * set_dispersion(CEllipsoidModel *self, PyObject *args) {
487        PyObject * disp;
488        const char * par_name;
489
490        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
491            PyErr_SetString(CEllipsoidModelError,
492                "CEllipsoidModel.set_dispersion expects a DispersionModel object.");
493                return NULL;
494        }
495        void *temp = PyCObject_AsVoidPtr(disp);
496        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
497
498
499        // Ugliness necessary to go from python to C
500            // TODO: refactor this
501    if (!strcmp(par_name, "radius_a")) {
502        self->model->radius_a.dispersion = dispersion;
503    } else    if (!strcmp(par_name, "radius_b")) {
504        self->model->radius_b.dispersion = dispersion;
505    } else    if (!strcmp(par_name, "axis_theta")) {
506        self->model->axis_theta.dispersion = dispersion;
507    } else    if (!strcmp(par_name, "axis_phi")) {
508        self->model->axis_phi.dispersion = dispersion;
509    } else {
510            PyErr_SetString(CEllipsoidModelError,
511                "CEllipsoidModel.set_dispersion expects a valid parameter name.");
512                return NULL;
513        }
514
515        DispersionVisitor* visitor = new DispersionVisitor();
516        PyObject * disp_dict = PyDict_New();
517        dispersion->accept_as_source(visitor, dispersion, disp_dict);
518        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
519    return Py_BuildValue("i",1);
520}
521
522
523static PyMethodDef CEllipsoidModel_methods[] = {
524    {"run",      (PyCFunction)run     , METH_VARARGS,
525      "Evaluate the model at a given Q or Q, phi"},
526    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
527      "Evaluate the model at a given Q or Qx, Qy"},
528    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
529      "Evaluate the model at a given Q or Q, phi"},
530     
531    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
532      "Evaluate the model at a given Q or Qx, Qy vector "},
533    {"reset",    (PyCFunction)reset   , METH_VARARGS,
534      "Reset pair correlation"},
535    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
536      "Set the dispersion model for a given parameter"},
537   {NULL}
538};
539
540static PyTypeObject CEllipsoidModelType = {
541    PyObject_HEAD_INIT(NULL)
542    0,                         /*ob_size*/
543    "CEllipsoidModel",             /*tp_name*/
544    sizeof(CEllipsoidModel),             /*tp_basicsize*/
545    0,                         /*tp_itemsize*/
546    (destructor)CEllipsoidModel_dealloc, /*tp_dealloc*/
547    0,                         /*tp_print*/
548    0,                         /*tp_getattr*/
549    0,                         /*tp_setattr*/
550    0,                         /*tp_compare*/
551    0,                         /*tp_repr*/
552    0,                         /*tp_as_number*/
553    0,                         /*tp_as_sequence*/
554    0,                         /*tp_as_mapping*/
555    0,                         /*tp_hash */
556    0,                         /*tp_call*/
557    0,                         /*tp_str*/
558    0,                         /*tp_getattro*/
559    0,                         /*tp_setattro*/
560    0,                         /*tp_as_buffer*/
561    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
562    "CEllipsoidModel objects",           /* tp_doc */
563    0,                         /* tp_traverse */
564    0,                         /* tp_clear */
565    0,                         /* tp_richcompare */
566    0,                         /* tp_weaklistoffset */
567    0,                         /* tp_iter */
568    0,                         /* tp_iternext */
569    CEllipsoidModel_methods,             /* tp_methods */
570    CEllipsoidModel_members,             /* tp_members */
571    0,                         /* tp_getset */
572    0,                         /* tp_base */
573    0,                         /* tp_dict */
574    0,                         /* tp_descr_get */
575    0,                         /* tp_descr_set */
576    0,                         /* tp_dictoffset */
577    (initproc)CEllipsoidModel_init,      /* tp_init */
578    0,                         /* tp_alloc */
579    CEllipsoidModel_new,                 /* tp_new */
580};
581
582
583//static PyMethodDef module_methods[] = {
584//    {NULL}
585//};
586
587/**
588 * Function used to add the model class to a module
589 * @param module: module to add the class to
590 */ 
591void addCEllipsoidModel(PyObject *module) {
592        PyObject *d;
593       
594    if (PyType_Ready(&CEllipsoidModelType) < 0)
595        return;
596
597    Py_INCREF(&CEllipsoidModelType);
598    PyModule_AddObject(module, "CEllipsoidModel", (PyObject *)&CEllipsoidModelType);
599   
600    d = PyModule_GetDict(module);
601    CEllipsoidModelError = PyErr_NewException("CEllipsoidModel.error", NULL, NULL);
602    PyDict_SetItemString(d, "CEllipsoidModelError", CEllipsoidModelError);
603}
604
Note: See TracBrowser for help on using the repository browser.