source: sasview/sansmodels/src/sans/models/c_models/CEllipsoidModel.cpp @ 2605da22

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 2605da22 was 2605da22, checked in by Mathieu Doucet <doucetm@…>, 12 years ago

Re #4 Still a few more warnings

  • Property mode set to 100644
File size: 23.8 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "ellipsoid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipsoidModel;
57
58
59static void
60CEllipsoidModel_dealloc(CEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipsoidModel *self;
75   
76    self = (CEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipsoidModel_init(CEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
93        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",90.000000000000));
94        PyDict_SetItemString(self->params,"radius_b",Py_BuildValue("d",400.000000000000));
95        PyDict_SetItemString(self->params,"radius_a",Py_BuildValue("d",20.000000000000));
96        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000000000));
97        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.000001000000));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"sldEll",Py_BuildValue("d",0.000004000000));
100        // Initialize dispersion / averaging parameter dict
101        DispersionVisitor* visitor = new DispersionVisitor();
102        PyObject * disp_dict;
103        disp_dict = PyDict_New();
104        self->model->radius_a.dispersion->accept_as_source(visitor, self->model->radius_a.dispersion, disp_dict);
105        PyDict_SetItemString(self->dispersion, "radius_a", disp_dict);
106        disp_dict = PyDict_New();
107        self->model->radius_b.dispersion->accept_as_source(visitor, self->model->radius_b.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "radius_b", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
115
116
117         
118        // Create empty log
119        self->log = PyDict_New();
120       
121       
122
123    }
124    return 0;
125}
126
127static char name_params[] = "params";
128static char def_params[] = "Parameters";
129static char name_dispersion[] = "dispersion";
130static char def_dispersion[] = "Dispersion parameters";
131static char name_log[] = "log";
132static char def_log[] = "Log";
133
134static PyMemberDef CEllipsoidModel_members[] = {
135    {name_params, T_OBJECT, offsetof(CEllipsoidModel, params), 0, def_params},
136        {name_dispersion, T_OBJECT, offsetof(CEllipsoidModel, dispersion), 0, def_dispersion},     
137    {name_log, T_OBJECT, offsetof(CEllipsoidModel, log), 0, def_log},
138    {NULL}  /* Sentinel */
139};
140
141/** Read double from PyObject
142    @param p PyObject
143    @return double
144*/
145double CEllipsoidModel_readDouble(PyObject *p) {
146    if (PyFloat_Check(p)==1) {
147        return (double)(((PyFloatObject *)(p))->ob_fval);
148    } else if (PyInt_Check(p)==1) {
149        return (double)(((PyIntObject *)(p))->ob_ival);
150    } else if (PyLong_Check(p)==1) {
151        return (double)PyLong_AsLong(p);
152    } else {
153        return 0.0;
154    }
155}
156/**
157 * Function to call to evaluate model
158 * @param args: input numpy array q[]
159 * @return: numpy array object
160 */
161 
162static PyObject *evaluateOneDim(EllipsoidModel* model, PyArrayObject *q){
163    PyArrayObject *result;
164   
165    // Check validity of array q , q must be of dimension 1, an array of double
166    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
167    {
168        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
169        //PyErr_SetString(PyExc_ValueError , message);
170        return NULL;
171    }
172    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
173                                                                                  PyArray_DOUBLE);
174        if (result == NULL) {
175        const char * message= "Could not create result ";
176        PyErr_SetString(PyExc_RuntimeError , message);
177                return NULL;
178        }
179         for (int i = 0; i < q->dimensions[0]; i++){
180      double q_value  = *(double *)(q->data + i*q->strides[0]);
181      double *result_value = (double *)(result->data + i*result->strides[0]);
182      *result_value =(*model)(q_value);
183        }
184    return PyArray_Return(result); 
185 }
186
187 /**
188 * Function to call to evaluate model
189 * @param args: input numpy array  [x[],y[]]
190 * @return: numpy array object
191 */
192 static PyObject * evaluateTwoDimXY( EllipsoidModel* model, 
193                              PyArrayObject *x, PyArrayObject *y)
194 {
195    PyArrayObject *result;
196    int i, x_len, y_len, dims[1];
197    //check validity of input vectors
198    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
199        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
200        || y->dimensions[0] != x->dimensions[0]){
201        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
202        PyErr_SetString(PyExc_ValueError , message); 
203        return NULL;
204    }
205   
206        if (PyArray_Check(x) && PyArray_Check(y)) {
207               
208            x_len = dims[0]= x->dimensions[0];
209        y_len = dims[0]= y->dimensions[0];
210           
211            // Make a new double matrix of same dims
212        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
213        if (result == NULL){
214            const char * message= "Could not create result ";
215        PyErr_SetString(PyExc_RuntimeError , message);
216            return NULL;
217            }
218       
219        /* Do the calculation. */
220        for ( i=0; i< x_len; i++) {
221            double x_value = *(double *)(x->data + i*x->strides[0]);
222                    double y_value = *(double *)(y->data + i*y->strides[0]);
223                        double *result_value = (double *)(result->data +
224                              i*result->strides[0]);
225                        *result_value = (*model)(x_value, y_value);
226        }           
227        return PyArray_Return(result); 
228       
229        }else{
230                    PyErr_SetString(CEllipsoidModelError, 
231                   "CEllipsoidModel.evaluateTwoDimXY couldn't run.");
232                return NULL;
233                }       
234}
235/**
236 *  evalDistribution function evaluate a model function with input vector
237 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
238 *
239 */ 
240static PyObject * evalDistribution(CEllipsoidModel *self, PyObject *args){
241        PyObject *qx, *qy;
242        PyArrayObject * pars;
243        int npars ,mpars;
244       
245        // Get parameters
246       
247            // Reader parameter dictionary
248    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
249    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
250    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
251    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
252    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
253    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
254    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
255    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
256    // Read in dispersion parameters
257    PyObject* disp_dict;
258    DispersionVisitor* visitor = new DispersionVisitor();
259    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
260    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
261    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
262    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
263    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
264    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
265    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
266    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
267
268       
269        // Get input and determine whether we have to supply a 1D or 2D return value.
270        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
271            PyErr_SetString(CEllipsoidModelError, 
272                "CEllipsoidModel.evalDistribution expects a q value.");
273                return NULL;
274        }
275    // Check params
276       
277    if(PyArray_Check(pars)==1) {
278               
279            // Length of list should 1 or 2
280            npars = pars->nd; 
281            if(npars==1) {
282                // input is a numpy array
283                if (PyArray_Check(pars)) {
284                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
285                    }
286                }else{
287                    PyErr_SetString(CEllipsoidModelError, 
288                   "CEllipsoidModel.evalDistribution expect numpy array of one dimension.");
289                return NULL;
290                }
291    }else if( PyList_Check(pars)==1) {
292        // Length of list should be 2 for I(qx,qy)
293            mpars = PyList_GET_SIZE(pars); 
294            if(mpars!=2) {
295                PyErr_SetString(CEllipsoidModelError, 
296                        "CEllipsoidModel.evalDistribution expects a list of dimension 2.");
297                return NULL;
298            }
299             qx = PyList_GET_ITEM(pars,0);
300             qy = PyList_GET_ITEM(pars,1);
301             if (PyArray_Check(qx) && PyArray_Check(qy)) {
302                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
303                           (PyArrayObject*)qy);
304                 }else{
305                    PyErr_SetString(CEllipsoidModelError, 
306                   "CEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
307                return NULL;
308             }
309        }
310        PyErr_SetString(CEllipsoidModelError, 
311                   "CEllipsoidModel.evalDistribution couln't be run.");
312        return NULL;
313       
314}
315
316/**
317 * Function to call to evaluate model
318 * @param args: input q or [q,phi]
319 * @return: function value
320 */
321static PyObject * run(CEllipsoidModel *self, PyObject *args) {
322        double q_value, phi_value;
323        PyObject* pars;
324        int npars;
325       
326        // Get parameters
327       
328            // Reader parameter dictionary
329    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
330    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
331    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
332    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
333    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
334    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
335    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
336    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
337    // Read in dispersion parameters
338    PyObject* disp_dict;
339    DispersionVisitor* visitor = new DispersionVisitor();
340    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
341    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
342    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
343    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
344    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
345    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
346    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
347    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
348
349       
350        // Get input and determine whether we have to supply a 1D or 2D return value.
351        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
352            PyErr_SetString(CEllipsoidModelError, 
353                "CEllipsoidModel.run expects a q value.");
354                return NULL;
355        }
356         
357        // Check params
358        if( PyList_Check(pars)==1) {
359               
360                // Length of list should be 2 for I(q,phi)
361            npars = PyList_GET_SIZE(pars); 
362            if(npars!=2) {
363                PyErr_SetString(CEllipsoidModelError, 
364                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
365                return NULL;
366            }
367            // We have a vector q, get the q and phi values at which
368            // to evaluate I(q,phi)
369            q_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
370            phi_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
371            // Skip zero
372            if (q_value==0) {
373                return Py_BuildValue("d",0.0);
374            }
375                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
376
377        } else {
378
379                // We have a scalar q, we will evaluate I(q)
380                q_value = CEllipsoidModel_readDouble(pars);             
381               
382                return Py_BuildValue("d",(*(self->model))(q_value));
383        }       
384}
385/**
386 * Function to call to calculate_ER
387 * @return: effective radius value
388 */
389static PyObject * calculate_ER(CEllipsoidModel *self) {
390
391        // Get parameters
392       
393            // Reader parameter dictionary
394    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
395    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
396    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
397    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
398    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
399    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
400    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
401    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
402    // Read in dispersion parameters
403    PyObject* disp_dict;
404    DispersionVisitor* visitor = new DispersionVisitor();
405    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
406    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
407    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
408    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
409    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
410    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
411    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
412    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
413
414               
415        return Py_BuildValue("d",(*(self->model)).calculate_ER());
416
417}
418/**
419 * Function to call to evaluate model in cartesian coordinates
420 * @param args: input q or [qx, qy]]
421 * @return: function value
422 */
423static PyObject * runXY(CEllipsoidModel *self, PyObject *args) {
424        double qx_value, qy_value;
425        PyObject* pars;
426        int npars;
427       
428        // Get parameters
429       
430            // Reader parameter dictionary
431    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
432    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
433    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
434    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
435    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
436    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
437    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
438    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
439    // Read in dispersion parameters
440    PyObject* disp_dict;
441    DispersionVisitor* visitor = new DispersionVisitor();
442    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
443    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
444    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
445    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
446    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
447    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
448    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
449    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
450
451       
452        // Get input and determine whether we have to supply a 1D or 2D return value.
453        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
454            PyErr_SetString(CEllipsoidModelError, 
455                "CEllipsoidModel.run expects a q value.");
456                return NULL;
457        }
458         
459        // Check params
460        if( PyList_Check(pars)==1) {
461               
462                // Length of list should be 2 for I(qx, qy))
463            npars = PyList_GET_SIZE(pars); 
464            if(npars!=2) {
465                PyErr_SetString(CEllipsoidModelError, 
466                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
467                return NULL;
468            }
469            // We have a vector q, get the qx and qy values at which
470            // to evaluate I(qx,qy)
471            qx_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
472            qy_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
473            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
474
475        } else {
476
477                // We have a scalar q, we will evaluate I(q)
478                qx_value = CEllipsoidModel_readDouble(pars);           
479               
480                return Py_BuildValue("d",(*(self->model))(qx_value));
481        }       
482}
483
484static PyObject * reset(CEllipsoidModel *self, PyObject *args) {
485   
486
487    return Py_BuildValue("d",0.0);
488}
489
490static PyObject * set_dispersion(CEllipsoidModel *self, PyObject *args) {
491        PyObject * disp;
492        const char * par_name;
493
494        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
495            PyErr_SetString(CEllipsoidModelError,
496                "CEllipsoidModel.set_dispersion expects a DispersionModel object.");
497                return NULL;
498        }
499        void *temp = PyCObject_AsVoidPtr(disp);
500        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
501
502
503        // Ugliness necessary to go from python to C
504            // TODO: refactor this
505    if (!strcmp(par_name, "radius_a")) {
506        self->model->radius_a.dispersion = dispersion;
507    } else    if (!strcmp(par_name, "radius_b")) {
508        self->model->radius_b.dispersion = dispersion;
509    } else    if (!strcmp(par_name, "axis_theta")) {
510        self->model->axis_theta.dispersion = dispersion;
511    } else    if (!strcmp(par_name, "axis_phi")) {
512        self->model->axis_phi.dispersion = dispersion;
513    } else {
514            PyErr_SetString(CEllipsoidModelError,
515                "CEllipsoidModel.set_dispersion expects a valid parameter name.");
516                return NULL;
517        }
518
519        DispersionVisitor* visitor = new DispersionVisitor();
520        PyObject * disp_dict = PyDict_New();
521        dispersion->accept_as_source(visitor, dispersion, disp_dict);
522        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
523    return Py_BuildValue("i",1);
524}
525
526
527static PyMethodDef CEllipsoidModel_methods[] = {
528    {"run",      (PyCFunction)run     , METH_VARARGS,
529      "Evaluate the model at a given Q or Q, phi"},
530    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
531      "Evaluate the model at a given Q or Qx, Qy"},
532    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
533      "Evaluate the model at a given Q or Q, phi"},
534     
535    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
536      "Evaluate the model at a given Q or Qx, Qy vector "},
537    {"reset",    (PyCFunction)reset   , METH_VARARGS,
538      "Reset pair correlation"},
539    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
540      "Set the dispersion model for a given parameter"},
541   {NULL}
542};
543
544static PyTypeObject CEllipsoidModelType = {
545    PyObject_HEAD_INIT(NULL)
546    0,                         /*ob_size*/
547    "CEllipsoidModel",             /*tp_name*/
548    sizeof(CEllipsoidModel),             /*tp_basicsize*/
549    0,                         /*tp_itemsize*/
550    (destructor)CEllipsoidModel_dealloc, /*tp_dealloc*/
551    0,                         /*tp_print*/
552    0,                         /*tp_getattr*/
553    0,                         /*tp_setattr*/
554    0,                         /*tp_compare*/
555    0,                         /*tp_repr*/
556    0,                         /*tp_as_number*/
557    0,                         /*tp_as_sequence*/
558    0,                         /*tp_as_mapping*/
559    0,                         /*tp_hash */
560    0,                         /*tp_call*/
561    0,                         /*tp_str*/
562    0,                         /*tp_getattro*/
563    0,                         /*tp_setattro*/
564    0,                         /*tp_as_buffer*/
565    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
566    "CEllipsoidModel objects",           /* tp_doc */
567    0,                         /* tp_traverse */
568    0,                         /* tp_clear */
569    0,                         /* tp_richcompare */
570    0,                         /* tp_weaklistoffset */
571    0,                         /* tp_iter */
572    0,                         /* tp_iternext */
573    CEllipsoidModel_methods,             /* tp_methods */
574    CEllipsoidModel_members,             /* tp_members */
575    0,                         /* tp_getset */
576    0,                         /* tp_base */
577    0,                         /* tp_dict */
578    0,                         /* tp_descr_get */
579    0,                         /* tp_descr_set */
580    0,                         /* tp_dictoffset */
581    (initproc)CEllipsoidModel_init,      /* tp_init */
582    0,                         /* tp_alloc */
583    CEllipsoidModel_new,                 /* tp_new */
584};
585
586
587//static PyMethodDef module_methods[] = {
588//    {NULL}
589//};
590
591/**
592 * Function used to add the model class to a module
593 * @param module: module to add the class to
594 */ 
595void addCEllipsoidModel(PyObject *module) {
596        PyObject *d;
597       
598    if (PyType_Ready(&CEllipsoidModelType) < 0)
599        return;
600
601    Py_INCREF(&CEllipsoidModelType);
602    PyModule_AddObject(module, "CEllipsoidModel", (PyObject *)&CEllipsoidModelType);
603   
604    d = PyModule_GetDict(module);
605    static char error_name[] = "CEllipsoidModel.error";
606    CEllipsoidModelError = PyErr_NewException(error_name, NULL, NULL);
607    PyDict_SetItemString(d, "CEllipsoidModelError", CEllipsoidModelError);
608}
609
Note: See TracBrowser for help on using the repository browser.