source: sasview/sansmodels/src/sans/models/c_models/CEllipsoidModel.cpp @ 479eced

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 479eced was c724ccd, checked in by Jae Cho <jhjcho@…>, 15 years ago

More models added and correction of Wrappergenerator on model parameter value precision

  • Property mode set to 100644
File size: 23.6 KB
RevLine 
[0f5bc9f]1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY ellipsoid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
[9bd69098]24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
[0f5bc9f]26 
27extern "C" {
28#include <Python.h>
[9bd69098]29#include <arrayobject.h>
[0f5bc9f]30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "ellipsoid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    EllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CEllipsoidModel;
57
58
59static void
60CEllipsoidModel_dealloc(CEllipsoidModel* self)
61{
[71e2de7]62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
[0f5bc9f]66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CEllipsoidModel *self;
75   
76    self = (CEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CEllipsoidModel_init(CEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new EllipsoidModel();
90       
91        // Initialize parameter dictionary
[c724ccd]92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.00000000));
93        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",1.57000000));
94        PyDict_SetItemString(self->params,"radius_b",Py_BuildValue("d",400.00000000));
95        PyDict_SetItemString(self->params,"radius_a",Py_BuildValue("d",20.00000000));
96        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.00000000));
97        PyDict_SetItemString(self->params,"sldSolv",Py_BuildValue("d",0.00000100));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.00000000));
99        PyDict_SetItemString(self->params,"sldEll",Py_BuildValue("d",0.00000400));
[0f5bc9f]100        // Initialize dispersion / averaging parameter dict
101        DispersionVisitor* visitor = new DispersionVisitor();
102        PyObject * disp_dict;
103        disp_dict = PyDict_New();
104        self->model->radius_a.dispersion->accept_as_source(visitor, self->model->radius_a.dispersion, disp_dict);
105        PyDict_SetItemString(self->dispersion, "radius_a", disp_dict);
106        disp_dict = PyDict_New();
107        self->model->radius_b.dispersion->accept_as_source(visitor, self->model->radius_b.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "radius_b", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
115
116
117         
118        // Create empty log
119        self->log = PyDict_New();
120       
121       
122
123    }
124    return 0;
125}
126
127static PyMemberDef CEllipsoidModel_members[] = {
128    {"params", T_OBJECT, offsetof(CEllipsoidModel, params), 0,
129     "Parameters"},
130        {"dispersion", T_OBJECT, offsetof(CEllipsoidModel, dispersion), 0,
131          "Dispersion parameters"},     
132    {"log", T_OBJECT, offsetof(CEllipsoidModel, log), 0,
133     "Log"},
134    {NULL}  /* Sentinel */
135};
136
137/** Read double from PyObject
138    @param p PyObject
139    @return double
140*/
141double CEllipsoidModel_readDouble(PyObject *p) {
142    if (PyFloat_Check(p)==1) {
143        return (double)(((PyFloatObject *)(p))->ob_fval);
144    } else if (PyInt_Check(p)==1) {
145        return (double)(((PyIntObject *)(p))->ob_ival);
146    } else if (PyLong_Check(p)==1) {
147        return (double)PyLong_AsLong(p);
148    } else {
149        return 0.0;
150    }
151}
[9bd69098]152/**
153 * Function to call to evaluate model
154 * @param args: input numpy array q[]
155 * @return: numpy array object
156 */
157 
158static PyObject *evaluateOneDim(EllipsoidModel* model, PyArrayObject *q){
159    PyArrayObject *result;
160   
161    // Check validity of array q , q must be of dimension 1, an array of double
162    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
163    {
164        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
165        //PyErr_SetString(PyExc_ValueError , message);
166        return NULL;
167    }
168    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
169                                                                                  PyArray_DOUBLE);
170        if (result == NULL) {
171        const char * message= "Could not create result ";
172        PyErr_SetString(PyExc_RuntimeError , message);
173                return NULL;
174        }
175         for (int i = 0; i < q->dimensions[0]; i++){
176      double q_value  = *(double *)(q->data + i*q->strides[0]);
177      double *result_value = (double *)(result->data + i*result->strides[0]);
178      *result_value =(*model)(q_value);
179        }
180    return PyArray_Return(result); 
181 }
182
183 /**
184 * Function to call to evaluate model
185 * @param args: input numpy array  [x[],y[]]
186 * @return: numpy array object
187 */
188 static PyObject * evaluateTwoDimXY( EllipsoidModel* model, 
189                              PyArrayObject *x, PyArrayObject *y)
190 {
191    PyArrayObject *result;
[3080527]192    int i,j, x_len, y_len, dims[1];
[9bd69098]193    //check validity of input vectors
[3080527]194    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
195        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
196        || y->dimensions[0] != x->dimensions[0]){
[9bd69098]197        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
198        PyErr_SetString(PyExc_ValueError , message); 
199        return NULL;
200    }
201   
202        if (PyArray_Check(x) && PyArray_Check(y)) {
[a8d6888]203               
[3080527]204            x_len = dims[0]= x->dimensions[0];
[9ce41c6]205        y_len = dims[0]= y->dimensions[0];
[9bd69098]206           
207            // Make a new double matrix of same dims
[3080527]208        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
[9bd69098]209        if (result == NULL){
210            const char * message= "Could not create result ";
211        PyErr_SetString(PyExc_RuntimeError , message);
212            return NULL;
213            }
214       
215        /* Do the calculation. */
[3080527]216        for ( i=0; i< x_len; i++) {
217            double x_value = *(double *)(x->data + i*x->strides[0]);
218                    double y_value = *(double *)(y->data + i*y->strides[0]);
219                        double *result_value = (double *)(result->data +
220                              i*result->strides[0]);
221                        *result_value = (*model)(x_value, y_value);
222        }           
[9bd69098]223        return PyArray_Return(result); 
224       
225        }else{
226                    PyErr_SetString(CEllipsoidModelError, 
227                   "CEllipsoidModel.evaluateTwoDimXY couldn't run.");
228                return NULL;
229                }       
230}
231/**
232 *  evalDistribution function evaluate a model function with input vector
233 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
234 *
235 */ 
236static PyObject * evalDistribution(CEllipsoidModel *self, PyObject *args){
237        PyObject *qx, *qy;
238        PyArrayObject * pars;
239        int npars ,mpars;
240       
241        // Get parameters
242       
243            // Reader parameter dictionary
244    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
245    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
246    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
247    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
248    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
[f10063e]249    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[9bd69098]250    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]251    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
[9bd69098]252    // Read in dispersion parameters
253    PyObject* disp_dict;
254    DispersionVisitor* visitor = new DispersionVisitor();
255    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
256    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
257    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
258    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
259    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
260    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
261    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
262    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
[0f5bc9f]263
[9bd69098]264       
265        // Get input and determine whether we have to supply a 1D or 2D return value.
266        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
267            PyErr_SetString(CEllipsoidModelError, 
268                "CEllipsoidModel.evalDistribution expects a q value.");
269                return NULL;
270        }
271    // Check params
272       
273    if(PyArray_Check(pars)==1) {
274               
275            // Length of list should 1 or 2
276            npars = pars->nd; 
277            if(npars==1) {
278                // input is a numpy array
279                if (PyArray_Check(pars)) {
280                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
281                    }
282                }else{
283                    PyErr_SetString(CEllipsoidModelError, 
284                   "CEllipsoidModel.evalDistribution expect numpy array of one dimension.");
285                return NULL;
286                }
287    }else if( PyList_Check(pars)==1) {
288        // Length of list should be 2 for I(qx,qy)
289            mpars = PyList_GET_SIZE(pars); 
290            if(mpars!=2) {
291                PyErr_SetString(CEllipsoidModelError, 
292                        "CEllipsoidModel.evalDistribution expects a list of dimension 2.");
293                return NULL;
294            }
295             qx = PyList_GET_ITEM(pars,0);
296             qy = PyList_GET_ITEM(pars,1);
297             if (PyArray_Check(qx) && PyArray_Check(qy)) {
298                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
299                           (PyArrayObject*)qy);
300                 }else{
301                    PyErr_SetString(CEllipsoidModelError, 
302                   "CEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
303                return NULL;
304             }
305        }
[e0a8a3c]306        PyErr_SetString(CEllipsoidModelError, 
307                   "CEllipsoidModel.evalDistribution couln't be run.");
308        return NULL;
309       
[9bd69098]310}
[0f5bc9f]311
312/**
313 * Function to call to evaluate model
314 * @param args: input q or [q,phi]
315 * @return: function value
316 */
317static PyObject * run(CEllipsoidModel *self, PyObject *args) {
318        double q_value, phi_value;
319        PyObject* pars;
320        int npars;
321       
322        // Get parameters
323       
324            // Reader parameter dictionary
325    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
326    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
327    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
328    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
329    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
[f10063e]330    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[0f5bc9f]331    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]332    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
[0f5bc9f]333    // Read in dispersion parameters
334    PyObject* disp_dict;
335    DispersionVisitor* visitor = new DispersionVisitor();
336    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
337    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
338    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
339    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
340    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
341    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
342    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
343    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
344
345       
346        // Get input and determine whether we have to supply a 1D or 2D return value.
347        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
348            PyErr_SetString(CEllipsoidModelError, 
349                "CEllipsoidModel.run expects a q value.");
350                return NULL;
351        }
352         
353        // Check params
354        if( PyList_Check(pars)==1) {
355               
356                // Length of list should be 2 for I(q,phi)
357            npars = PyList_GET_SIZE(pars); 
358            if(npars!=2) {
359                PyErr_SetString(CEllipsoidModelError, 
360                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
361                return NULL;
362            }
363            // We have a vector q, get the q and phi values at which
364            // to evaluate I(q,phi)
365            q_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
366            phi_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
367            // Skip zero
368            if (q_value==0) {
369                return Py_BuildValue("d",0.0);
370            }
371                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
372
373        } else {
374
375                // We have a scalar q, we will evaluate I(q)
376                q_value = CEllipsoidModel_readDouble(pars);             
377               
378                return Py_BuildValue("d",(*(self->model))(q_value));
379        }       
380}
[5eb9154]381/**
382 * Function to call to calculate_ER
383 * @return: effective radius value
384 */
385static PyObject * calculate_ER(CEllipsoidModel *self) {
[0f5bc9f]386
[5eb9154]387        PyObject* pars;
388        int npars;
389       
390        // Get parameters
391       
392            // Reader parameter dictionary
393    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
394    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
395    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
396    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
397    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
[f10063e]398    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[5eb9154]399    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]400    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
[5eb9154]401    // Read in dispersion parameters
402    PyObject* disp_dict;
403    DispersionVisitor* visitor = new DispersionVisitor();
404    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
405    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
406    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
407    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
408    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
409    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
410    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
411    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
412
413               
414        return Py_BuildValue("d",(*(self->model)).calculate_ER());
415
416}
[0f5bc9f]417/**
418 * Function to call to evaluate model in cartesian coordinates
419 * @param args: input q or [qx, qy]]
420 * @return: function value
421 */
422static PyObject * runXY(CEllipsoidModel *self, PyObject *args) {
423        double qx_value, qy_value;
424        PyObject* pars;
425        int npars;
426       
427        // Get parameters
428       
429            // Reader parameter dictionary
430    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
431    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
432    self->model->radius_b = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_b") );
433    self->model->radius_a = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius_a") );
434    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
[f10063e]435    self->model->sldSolv = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldSolv") );
[0f5bc9f]436    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
[f10063e]437    self->model->sldEll = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sldEll") );
[0f5bc9f]438    // Read in dispersion parameters
439    PyObject* disp_dict;
440    DispersionVisitor* visitor = new DispersionVisitor();
441    disp_dict = PyDict_GetItemString(self->dispersion, "radius_a");
442    self->model->radius_a.dispersion->accept_as_destination(visitor, self->model->radius_a.dispersion, disp_dict);
443    disp_dict = PyDict_GetItemString(self->dispersion, "radius_b");
444    self->model->radius_b.dispersion->accept_as_destination(visitor, self->model->radius_b.dispersion, disp_dict);
445    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
446    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
447    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
448    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
449
450       
451        // Get input and determine whether we have to supply a 1D or 2D return value.
452        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
453            PyErr_SetString(CEllipsoidModelError, 
454                "CEllipsoidModel.run expects a q value.");
455                return NULL;
456        }
457         
458        // Check params
459        if( PyList_Check(pars)==1) {
460               
461                // Length of list should be 2 for I(qx, qy))
462            npars = PyList_GET_SIZE(pars); 
463            if(npars!=2) {
464                PyErr_SetString(CEllipsoidModelError, 
465                        "CEllipsoidModel.run expects a double or a list of dimension 2.");
466                return NULL;
467            }
468            // We have a vector q, get the qx and qy values at which
469            // to evaluate I(qx,qy)
470            qx_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
471            qy_value = CEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
472            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
473
474        } else {
475
476                // We have a scalar q, we will evaluate I(q)
477                qx_value = CEllipsoidModel_readDouble(pars);           
478               
479                return Py_BuildValue("d",(*(self->model))(qx_value));
480        }       
481}
482
483static PyObject * reset(CEllipsoidModel *self, PyObject *args) {
484   
485
486    return Py_BuildValue("d",0.0);
487}
488
489static PyObject * set_dispersion(CEllipsoidModel *self, PyObject *args) {
490        PyObject * disp;
491        const char * par_name;
492
493        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
494            PyErr_SetString(CEllipsoidModelError,
495                "CEllipsoidModel.set_dispersion expects a DispersionModel object.");
496                return NULL;
497        }
498        void *temp = PyCObject_AsVoidPtr(disp);
499        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
500
501
502        // Ugliness necessary to go from python to C
503            // TODO: refactor this
504    if (!strcmp(par_name, "radius_a")) {
505        self->model->radius_a.dispersion = dispersion;
506    } else    if (!strcmp(par_name, "radius_b")) {
507        self->model->radius_b.dispersion = dispersion;
508    } else    if (!strcmp(par_name, "axis_theta")) {
509        self->model->axis_theta.dispersion = dispersion;
510    } else    if (!strcmp(par_name, "axis_phi")) {
511        self->model->axis_phi.dispersion = dispersion;
512    } else {
513            PyErr_SetString(CEllipsoidModelError,
514                "CEllipsoidModel.set_dispersion expects a valid parameter name.");
515                return NULL;
516        }
517
518        DispersionVisitor* visitor = new DispersionVisitor();
519        PyObject * disp_dict = PyDict_New();
520        dispersion->accept_as_source(visitor, dispersion, disp_dict);
521        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
522    return Py_BuildValue("i",1);
523}
524
525
526static PyMethodDef CEllipsoidModel_methods[] = {
527    {"run",      (PyCFunction)run     , METH_VARARGS,
528      "Evaluate the model at a given Q or Q, phi"},
529    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
530      "Evaluate the model at a given Q or Qx, Qy"},
[5eb9154]531    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
532      "Evaluate the model at a given Q or Q, phi"},
[9bd69098]533     
534    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
535      "Evaluate the model at a given Q or Qx, Qy vector "},
[0f5bc9f]536    {"reset",    (PyCFunction)reset   , METH_VARARGS,
537      "Reset pair correlation"},
538    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
539      "Set the dispersion model for a given parameter"},
540   {NULL}
541};
542
543static PyTypeObject CEllipsoidModelType = {
544    PyObject_HEAD_INIT(NULL)
545    0,                         /*ob_size*/
546    "CEllipsoidModel",             /*tp_name*/
547    sizeof(CEllipsoidModel),             /*tp_basicsize*/
548    0,                         /*tp_itemsize*/
549    (destructor)CEllipsoidModel_dealloc, /*tp_dealloc*/
550    0,                         /*tp_print*/
551    0,                         /*tp_getattr*/
552    0,                         /*tp_setattr*/
553    0,                         /*tp_compare*/
554    0,                         /*tp_repr*/
555    0,                         /*tp_as_number*/
556    0,                         /*tp_as_sequence*/
557    0,                         /*tp_as_mapping*/
558    0,                         /*tp_hash */
559    0,                         /*tp_call*/
560    0,                         /*tp_str*/
561    0,                         /*tp_getattro*/
562    0,                         /*tp_setattro*/
563    0,                         /*tp_as_buffer*/
564    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
565    "CEllipsoidModel objects",           /* tp_doc */
566    0,                         /* tp_traverse */
567    0,                         /* tp_clear */
568    0,                         /* tp_richcompare */
569    0,                         /* tp_weaklistoffset */
570    0,                         /* tp_iter */
571    0,                         /* tp_iternext */
572    CEllipsoidModel_methods,             /* tp_methods */
573    CEllipsoidModel_members,             /* tp_members */
574    0,                         /* tp_getset */
575    0,                         /* tp_base */
576    0,                         /* tp_dict */
577    0,                         /* tp_descr_get */
578    0,                         /* tp_descr_set */
579    0,                         /* tp_dictoffset */
580    (initproc)CEllipsoidModel_init,      /* tp_init */
581    0,                         /* tp_alloc */
582    CEllipsoidModel_new,                 /* tp_new */
583};
584
585
[9bd69098]586//static PyMethodDef module_methods[] = {
587//    {NULL}
588//};
[0f5bc9f]589
590/**
591 * Function used to add the model class to a module
592 * @param module: module to add the class to
593 */ 
594void addCEllipsoidModel(PyObject *module) {
595        PyObject *d;
596       
597    if (PyType_Ready(&CEllipsoidModelType) < 0)
598        return;
599
600    Py_INCREF(&CEllipsoidModelType);
601    PyModule_AddObject(module, "CEllipsoidModel", (PyObject *)&CEllipsoidModelType);
602   
603    d = PyModule_GetDict(module);
604    CEllipsoidModelError = PyErr_NewException("CEllipsoidModel.error", NULL, NULL);
605    PyDict_SetItemString(d, "CEllipsoidModelError", CEllipsoidModelError);
606}
607
Note: See TracBrowser for help on using the repository browser.