source: sasview/sansmodels/src/sans/models/c_models/CCylinderModel.cpp @ 437e639

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 437e639 was 3080527, checked in by Jae Cho <jhjcho@…>, 15 years ago

changed classtemplate for 2d evaluation from matrix form to 1d array form

  • Property mode set to 100644
File size: 23.0 KB
RevLine 
[af03ddd]1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CCylinderModel
[fca6936]16 *
[af03ddd]17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY cylinder.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
[fca6936]22 *
23 */
[9bd69098]24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
[af03ddd]26 
[fca6936]27extern "C" {
28#include <Python.h>
[9bd69098]29#include <arrayobject.h>
[fca6936]30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "cylinder.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CCylinderModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
[af03ddd]50    /// Dispersion parameters
[fca6936]51    PyObject * dispersion;
[af03ddd]52    /// Underlying model object
53    CylinderModel * model;
[fca6936]54    /// Log for unit testing
55    PyObject * log;
56} CCylinderModel;
57
58
59static void
60CCylinderModel_dealloc(CCylinderModel* self)
61{
[71e2de7]62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
[fca6936]66    self->ob_type->tp_free((PyObject*)self);
[af03ddd]67   
[fca6936]68
69}
70
71static PyObject *
72CCylinderModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CCylinderModel *self;
[af03ddd]75   
[fca6936]76    self = (CCylinderModel *)type->tp_alloc(type, 0);
[af03ddd]77   
[fca6936]78    return (PyObject *)self;
79}
80
81static int
82CCylinderModel_init(CCylinderModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
[af03ddd]85       
[fca6936]86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
[af03ddd]89        self->model = new CylinderModel();
90       
[fca6936]91        // Initialize parameter dictionary
[0f5bc9f]92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000));
93        PyDict_SetItemString(self->params,"length",Py_BuildValue("d",400.000000));
94        PyDict_SetItemString(self->params,"cyl_theta",Py_BuildValue("d",1.000000));
95        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.000000));
96        PyDict_SetItemString(self->params,"radius",Py_BuildValue("d",20.000000));
97        PyDict_SetItemString(self->params,"contrast",Py_BuildValue("d",0.000003));
98        PyDict_SetItemString(self->params,"cyl_phi",Py_BuildValue("d",1.000000));
[fca6936]99        // Initialize dispersion / averaging parameter dict
100        DispersionVisitor* visitor = new DispersionVisitor();
[af03ddd]101        PyObject * disp_dict;
102        disp_dict = PyDict_New();
[fca6936]103        self->model->radius.dispersion->accept_as_source(visitor, self->model->radius.dispersion, disp_dict);
[af03ddd]104        PyDict_SetItemString(self->dispersion, "radius", disp_dict);
[fca6936]105        disp_dict = PyDict_New();
106        self->model->length.dispersion->accept_as_source(visitor, self->model->length.dispersion, disp_dict);
[af03ddd]107        PyDict_SetItemString(self->dispersion, "length", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->cyl_theta.dispersion->accept_as_source(visitor, self->model->cyl_theta.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "cyl_theta", disp_dict);
[fca6936]111        disp_dict = PyDict_New();
112        self->model->cyl_phi.dispersion->accept_as_source(visitor, self->model->cyl_phi.dispersion, disp_dict);
[af03ddd]113        PyDict_SetItemString(self->dispersion, "cyl_phi", disp_dict);
[fca6936]114
115
[af03ddd]116         
[fca6936]117        // Create empty log
118        self->log = PyDict_New();
[af03ddd]119       
120       
[fca6936]121
122    }
123    return 0;
124}
125
126static PyMemberDef CCylinderModel_members[] = {
[af03ddd]127    {"params", T_OBJECT, offsetof(CCylinderModel, params), 0,
128     "Parameters"},
[fca6936]129        {"dispersion", T_OBJECT, offsetof(CCylinderModel, dispersion), 0,
[af03ddd]130          "Dispersion parameters"},     
[fca6936]131    {"log", T_OBJECT, offsetof(CCylinderModel, log), 0,
132     "Log"},
133    {NULL}  /* Sentinel */
134};
135
136/** Read double from PyObject
137    @param p PyObject
138    @return double
139*/
140double CCylinderModel_readDouble(PyObject *p) {
141    if (PyFloat_Check(p)==1) {
142        return (double)(((PyFloatObject *)(p))->ob_fval);
143    } else if (PyInt_Check(p)==1) {
144        return (double)(((PyIntObject *)(p))->ob_ival);
145    } else if (PyLong_Check(p)==1) {
146        return (double)PyLong_AsLong(p);
147    } else {
148        return 0.0;
149    }
150}
[9bd69098]151/**
152 * Function to call to evaluate model
153 * @param args: input numpy array q[]
154 * @return: numpy array object
155 */
156 
157static PyObject *evaluateOneDim(CylinderModel* model, PyArrayObject *q){
158    PyArrayObject *result;
159   
160    // Check validity of array q , q must be of dimension 1, an array of double
161    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
162    {
163        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
164        //PyErr_SetString(PyExc_ValueError , message);
165        return NULL;
166    }
167    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
168                                                                                  PyArray_DOUBLE);
169        if (result == NULL) {
170        const char * message= "Could not create result ";
171        PyErr_SetString(PyExc_RuntimeError , message);
172                return NULL;
173        }
174         for (int i = 0; i < q->dimensions[0]; i++){
175      double q_value  = *(double *)(q->data + i*q->strides[0]);
176      double *result_value = (double *)(result->data + i*result->strides[0]);
177      *result_value =(*model)(q_value);
178        }
179    return PyArray_Return(result); 
180 }
181
182 /**
183 * Function to call to evaluate model
184 * @param args: input numpy array  [x[],y[]]
185 * @return: numpy array object
186 */
187 static PyObject * evaluateTwoDimXY( CylinderModel* model, 
188                              PyArrayObject *x, PyArrayObject *y)
189 {
190    PyArrayObject *result;
[3080527]191    int i,j, x_len, y_len, dims[1];
[9bd69098]192    //check validity of input vectors
[3080527]193    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
194        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
195        || y->dimensions[0] != x->dimensions[0]){
[9bd69098]196        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
197        PyErr_SetString(PyExc_ValueError , message); 
198        return NULL;
199    }
200   
201        if (PyArray_Check(x) && PyArray_Check(y)) {
[a8d6888]202               
[3080527]203            x_len = dims[0]= x->dimensions[0];
[9ce41c6]204        y_len = dims[0]= y->dimensions[0];
[9bd69098]205           
206            // Make a new double matrix of same dims
[3080527]207        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
[9bd69098]208        if (result == NULL){
209            const char * message= "Could not create result ";
210        PyErr_SetString(PyExc_RuntimeError , message);
211            return NULL;
212            }
213       
214        /* Do the calculation. */
[3080527]215        for ( i=0; i< x_len; i++) {
216            double x_value = *(double *)(x->data + i*x->strides[0]);
217                    double y_value = *(double *)(y->data + i*y->strides[0]);
218                        double *result_value = (double *)(result->data +
219                              i*result->strides[0]);
220                        *result_value = (*model)(x_value, y_value);
221        }           
[9bd69098]222        return PyArray_Return(result); 
223       
224        }else{
225                    PyErr_SetString(CCylinderModelError, 
226                   "CCylinderModel.evaluateTwoDimXY couldn't run.");
227                return NULL;
228                }       
229}
230/**
231 *  evalDistribution function evaluate a model function with input vector
232 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
233 *
234 */ 
235static PyObject * evalDistribution(CCylinderModel *self, PyObject *args){
236        PyObject *qx, *qy;
237        PyArrayObject * pars;
238        int npars ,mpars;
239       
240        // Get parameters
241       
242            // Reader parameter dictionary
243    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
244    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
245    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
246    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
247    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
248    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
249    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
250    // Read in dispersion parameters
251    PyObject* disp_dict;
252    DispersionVisitor* visitor = new DispersionVisitor();
253    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
254    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
255    disp_dict = PyDict_GetItemString(self->dispersion, "length");
256    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
257    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
258    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
259    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
260    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
[fca6936]261
[9bd69098]262       
263        // Get input and determine whether we have to supply a 1D or 2D return value.
264        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
265            PyErr_SetString(CCylinderModelError, 
266                "CCylinderModel.evalDistribution expects a q value.");
267                return NULL;
268        }
269    // Check params
270       
271    if(PyArray_Check(pars)==1) {
272               
273            // Length of list should 1 or 2
274            npars = pars->nd; 
275            if(npars==1) {
276                // input is a numpy array
277                if (PyArray_Check(pars)) {
278                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
279                    }
280                }else{
281                    PyErr_SetString(CCylinderModelError, 
282                   "CCylinderModel.evalDistribution expect numpy array of one dimension.");
283                return NULL;
284                }
285    }else if( PyList_Check(pars)==1) {
286        // Length of list should be 2 for I(qx,qy)
287            mpars = PyList_GET_SIZE(pars); 
288            if(mpars!=2) {
289                PyErr_SetString(CCylinderModelError, 
290                        "CCylinderModel.evalDistribution expects a list of dimension 2.");
291                return NULL;
292            }
293             qx = PyList_GET_ITEM(pars,0);
294             qy = PyList_GET_ITEM(pars,1);
295             if (PyArray_Check(qx) && PyArray_Check(qy)) {
296                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
297                           (PyArrayObject*)qy);
298                 }else{
299                    PyErr_SetString(CCylinderModelError, 
300                   "CCylinderModel.evalDistribution expect 2 numpy arrays in list.");
301                return NULL;
302             }
303        }
[e0a8a3c]304        PyErr_SetString(CCylinderModelError, 
305                   "CCylinderModel.evalDistribution couln't be run.");
306        return NULL;
307       
[9bd69098]308}
[fca6936]309
310/**
311 * Function to call to evaluate model
312 * @param args: input q or [q,phi]
313 * @return: function value
314 */
315static PyObject * run(CCylinderModel *self, PyObject *args) {
316        double q_value, phi_value;
317        PyObject* pars;
318        int npars;
[af03ddd]319       
[fca6936]320        // Get parameters
[af03ddd]321       
322            // Reader parameter dictionary
[fca6936]323    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
324    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
325    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
326    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
327    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
328    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
329    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
330    // Read in dispersion parameters
[af03ddd]331    PyObject* disp_dict;
[fca6936]332    DispersionVisitor* visitor = new DispersionVisitor();
[af03ddd]333    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
[fca6936]334    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
[af03ddd]335    disp_dict = PyDict_GetItemString(self->dispersion, "length");
[fca6936]336    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
[af03ddd]337    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
[fca6936]338    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
[af03ddd]339    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
[fca6936]340    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
341
[af03ddd]342       
[fca6936]343        // Get input and determine whether we have to supply a 1D or 2D return value.
344        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
[af03ddd]345            PyErr_SetString(CCylinderModelError, 
[fca6936]346                "CCylinderModel.run expects a q value.");
347                return NULL;
348        }
[af03ddd]349         
[fca6936]350        // Check params
351        if( PyList_Check(pars)==1) {
[af03ddd]352               
[fca6936]353                // Length of list should be 2 for I(q,phi)
[af03ddd]354            npars = PyList_GET_SIZE(pars); 
[fca6936]355            if(npars!=2) {
[af03ddd]356                PyErr_SetString(CCylinderModelError, 
[fca6936]357                        "CCylinderModel.run expects a double or a list of dimension 2.");
358                return NULL;
359            }
360            // We have a vector q, get the q and phi values at which
361            // to evaluate I(q,phi)
[4176435]362            q_value = CCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
363            phi_value = CCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
364            // Skip zero
365            if (q_value==0) {
366                return Py_BuildValue("d",0.0);
367            }
368                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
369
[fca6936]370        } else {
[4176435]371
372                // We have a scalar q, we will evaluate I(q)
[af03ddd]373                q_value = CCylinderModel_readDouble(pars);             
[4176435]374               
375                return Py_BuildValue("d",(*(self->model))(q_value));
376        }       
[fca6936]377}
[5eb9154]378/**
379 * Function to call to calculate_ER
380 * @return: effective radius value
381 */
382static PyObject * calculate_ER(CCylinderModel *self) {
[fca6936]383
[5eb9154]384        PyObject* pars;
385        int npars;
386       
387        // Get parameters
388       
389            // Reader parameter dictionary
390    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
391    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
392    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
393    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
394    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
395    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
396    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
397    // Read in dispersion parameters
398    PyObject* disp_dict;
399    DispersionVisitor* visitor = new DispersionVisitor();
400    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
401    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
402    disp_dict = PyDict_GetItemString(self->dispersion, "length");
403    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
404    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
405    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
406    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
407    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
408
409               
410        return Py_BuildValue("d",(*(self->model)).calculate_ER());
411
412}
[fca6936]413/**
414 * Function to call to evaluate model in cartesian coordinates
415 * @param args: input q or [qx, qy]]
416 * @return: function value
417 */
418static PyObject * runXY(CCylinderModel *self, PyObject *args) {
419        double qx_value, qy_value;
420        PyObject* pars;
421        int npars;
[af03ddd]422       
[fca6936]423        // Get parameters
[af03ddd]424       
425            // Reader parameter dictionary
[fca6936]426    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
427    self->model->length = PyFloat_AsDouble( PyDict_GetItemString(self->params, "length") );
428    self->model->cyl_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_theta") );
429    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
430    self->model->radius = PyFloat_AsDouble( PyDict_GetItemString(self->params, "radius") );
431    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
432    self->model->cyl_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "cyl_phi") );
433    // Read in dispersion parameters
[af03ddd]434    PyObject* disp_dict;
[fca6936]435    DispersionVisitor* visitor = new DispersionVisitor();
[af03ddd]436    disp_dict = PyDict_GetItemString(self->dispersion, "radius");
[fca6936]437    self->model->radius.dispersion->accept_as_destination(visitor, self->model->radius.dispersion, disp_dict);
[af03ddd]438    disp_dict = PyDict_GetItemString(self->dispersion, "length");
[fca6936]439    self->model->length.dispersion->accept_as_destination(visitor, self->model->length.dispersion, disp_dict);
[af03ddd]440    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_theta");
[fca6936]441    self->model->cyl_theta.dispersion->accept_as_destination(visitor, self->model->cyl_theta.dispersion, disp_dict);
[af03ddd]442    disp_dict = PyDict_GetItemString(self->dispersion, "cyl_phi");
[fca6936]443    self->model->cyl_phi.dispersion->accept_as_destination(visitor, self->model->cyl_phi.dispersion, disp_dict);
444
[af03ddd]445       
[fca6936]446        // Get input and determine whether we have to supply a 1D or 2D return value.
447        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
[af03ddd]448            PyErr_SetString(CCylinderModelError, 
[fca6936]449                "CCylinderModel.run expects a q value.");
450                return NULL;
451        }
[af03ddd]452         
[fca6936]453        // Check params
454        if( PyList_Check(pars)==1) {
[af03ddd]455               
[fca6936]456                // Length of list should be 2 for I(qx, qy))
[af03ddd]457            npars = PyList_GET_SIZE(pars); 
[fca6936]458            if(npars!=2) {
[af03ddd]459                PyErr_SetString(CCylinderModelError, 
[fca6936]460                        "CCylinderModel.run expects a double or a list of dimension 2.");
461                return NULL;
462            }
463            // We have a vector q, get the qx and qy values at which
464            // to evaluate I(qx,qy)
[4176435]465            qx_value = CCylinderModel_readDouble(PyList_GET_ITEM(pars,0));
466            qy_value = CCylinderModel_readDouble(PyList_GET_ITEM(pars,1));
467            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
[fca6936]468
469        } else {
[4176435]470
471                // We have a scalar q, we will evaluate I(q)
472                qx_value = CCylinderModel_readDouble(pars);             
[af03ddd]473               
[4176435]474                return Py_BuildValue("d",(*(self->model))(qx_value));
[af03ddd]475        }       
[fca6936]476}
477
478static PyObject * reset(CCylinderModel *self, PyObject *args) {
[af03ddd]479   
[fca6936]480
481    return Py_BuildValue("d",0.0);
482}
483
[af03ddd]484static PyObject * set_dispersion(CCylinderModel *self, PyObject *args) {
485        PyObject * disp;
486        const char * par_name;
487
488        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
489            PyErr_SetString(CCylinderModelError,
490                "CCylinderModel.set_dispersion expects a DispersionModel object.");
491                return NULL;
492        }
493        void *temp = PyCObject_AsVoidPtr(disp);
494        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
495
496
497        // Ugliness necessary to go from python to C
498            // TODO: refactor this
499    if (!strcmp(par_name, "radius")) {
500        self->model->radius.dispersion = dispersion;
501    } else    if (!strcmp(par_name, "length")) {
502        self->model->length.dispersion = dispersion;
503    } else    if (!strcmp(par_name, "cyl_theta")) {
504        self->model->cyl_theta.dispersion = dispersion;
505    } else    if (!strcmp(par_name, "cyl_phi")) {
506        self->model->cyl_phi.dispersion = dispersion;
507    } else {
508            PyErr_SetString(CCylinderModelError,
509                "CCylinderModel.set_dispersion expects a valid parameter name.");
510                return NULL;
511        }
512
513        DispersionVisitor* visitor = new DispersionVisitor();
514        PyObject * disp_dict = PyDict_New();
515        dispersion->accept_as_source(visitor, dispersion, disp_dict);
516        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
517    return Py_BuildValue("i",1);
518}
519
[fca6936]520
521static PyMethodDef CCylinderModel_methods[] = {
522    {"run",      (PyCFunction)run     , METH_VARARGS,
523      "Evaluate the model at a given Q or Q, phi"},
524    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
525      "Evaluate the model at a given Q or Qx, Qy"},
[5eb9154]526    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
527      "Evaluate the model at a given Q or Q, phi"},
[9bd69098]528     
529    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
530      "Evaluate the model at a given Q or Qx, Qy vector "},
[fca6936]531    {"reset",    (PyCFunction)reset   , METH_VARARGS,
532      "Reset pair correlation"},
[af03ddd]533    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
534      "Set the dispersion model for a given parameter"},
[fca6936]535   {NULL}
536};
537
538static PyTypeObject CCylinderModelType = {
539    PyObject_HEAD_INIT(NULL)
540    0,                         /*ob_size*/
541    "CCylinderModel",             /*tp_name*/
542    sizeof(CCylinderModel),             /*tp_basicsize*/
543    0,                         /*tp_itemsize*/
544    (destructor)CCylinderModel_dealloc, /*tp_dealloc*/
545    0,                         /*tp_print*/
546    0,                         /*tp_getattr*/
547    0,                         /*tp_setattr*/
548    0,                         /*tp_compare*/
549    0,                         /*tp_repr*/
550    0,                         /*tp_as_number*/
551    0,                         /*tp_as_sequence*/
552    0,                         /*tp_as_mapping*/
553    0,                         /*tp_hash */
554    0,                         /*tp_call*/
555    0,                         /*tp_str*/
556    0,                         /*tp_getattro*/
557    0,                         /*tp_setattro*/
558    0,                         /*tp_as_buffer*/
559    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
560    "CCylinderModel objects",           /* tp_doc */
561    0,                         /* tp_traverse */
562    0,                         /* tp_clear */
563    0,                         /* tp_richcompare */
564    0,                         /* tp_weaklistoffset */
565    0,                         /* tp_iter */
566    0,                         /* tp_iternext */
567    CCylinderModel_methods,             /* tp_methods */
568    CCylinderModel_members,             /* tp_members */
569    0,                         /* tp_getset */
570    0,                         /* tp_base */
571    0,                         /* tp_dict */
572    0,                         /* tp_descr_get */
573    0,                         /* tp_descr_set */
574    0,                         /* tp_dictoffset */
575    (initproc)CCylinderModel_init,      /* tp_init */
576    0,                         /* tp_alloc */
577    CCylinderModel_new,                 /* tp_new */
578};
579
580
[9bd69098]581//static PyMethodDef module_methods[] = {
582//    {NULL}
583//};
[4176435]584
[fca6936]585/**
586 * Function used to add the model class to a module
587 * @param module: module to add the class to
[af03ddd]588 */ 
[fca6936]589void addCCylinderModel(PyObject *module) {
590        PyObject *d;
[af03ddd]591       
[fca6936]592    if (PyType_Ready(&CCylinderModelType) < 0)
593        return;
594
595    Py_INCREF(&CCylinderModelType);
596    PyModule_AddObject(module, "CCylinderModel", (PyObject *)&CCylinderModelType);
[af03ddd]597   
[fca6936]598    d = PyModule_GetDict(module);
599    CCylinderModelError = PyErr_NewException("CCylinderModel.error", NULL, NULL);
600    PyDict_SetItemString(d, "CCylinderModelError", CCylinderModelError);
601}
602
Note: See TracBrowser for help on using the repository browser.