source: sasview/sansmodels/src/sans/models/c_models/CCoreShellEllipsoidModel.cpp @ c146f092

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since c146f092 was 71e2de7, checked in by Gervaise Alina <gervyh@…>, 15 years ago

change destructor for models

  • Property mode set to 100644
File size: 27.7 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CCoreShellEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY spheroid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "spheroid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CCoreShellEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    CoreShellEllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CCoreShellEllipsoidModel;
57
58
59static void
60CCoreShellEllipsoidModel_dealloc(CCoreShellEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CCoreShellEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CCoreShellEllipsoidModel *self;
75   
76    self = (CCoreShellEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CCoreShellEllipsoidModel_init(CCoreShellEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new CoreShellEllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000));
93        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",0.000000));
94        PyDict_SetItemString(self->params,"polar_shell",Py_BuildValue("d",30.000000));
95        PyDict_SetItemString(self->params,"sld_solvent",Py_BuildValue("d",0.000006));
96        PyDict_SetItemString(self->params,"equat_shell",Py_BuildValue("d",250.000000));
97        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000));
98        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.001000));
99        PyDict_SetItemString(self->params,"equat_core",Py_BuildValue("d",200.000000));
100        PyDict_SetItemString(self->params,"polar_core",Py_BuildValue("d",20.000000));
101        PyDict_SetItemString(self->params,"contrast",Py_BuildValue("d",0.000001));
102        // Initialize dispersion / averaging parameter dict
103        DispersionVisitor* visitor = new DispersionVisitor();
104        PyObject * disp_dict;
105        disp_dict = PyDict_New();
106        self->model->equat_core.dispersion->accept_as_source(visitor, self->model->equat_core.dispersion, disp_dict);
107        PyDict_SetItemString(self->dispersion, "equat_core", disp_dict);
108        disp_dict = PyDict_New();
109        self->model->polar_core.dispersion->accept_as_source(visitor, self->model->polar_core.dispersion, disp_dict);
110        PyDict_SetItemString(self->dispersion, "polar_core", disp_dict);
111        disp_dict = PyDict_New();
112        self->model->equat_shell.dispersion->accept_as_source(visitor, self->model->equat_shell.dispersion, disp_dict);
113        PyDict_SetItemString(self->dispersion, "equat_shell", disp_dict);
114        disp_dict = PyDict_New();
115        self->model->polar_shell.dispersion->accept_as_source(visitor, self->model->polar_shell.dispersion, disp_dict);
116        PyDict_SetItemString(self->dispersion, "polar_shell", disp_dict);
117        disp_dict = PyDict_New();
118        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
119        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
120        disp_dict = PyDict_New();
121        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
122        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
123
124
125         
126        // Create empty log
127        self->log = PyDict_New();
128       
129       
130
131    }
132    return 0;
133}
134
135static PyMemberDef CCoreShellEllipsoidModel_members[] = {
136    {"params", T_OBJECT, offsetof(CCoreShellEllipsoidModel, params), 0,
137     "Parameters"},
138        {"dispersion", T_OBJECT, offsetof(CCoreShellEllipsoidModel, dispersion), 0,
139          "Dispersion parameters"},     
140    {"log", T_OBJECT, offsetof(CCoreShellEllipsoidModel, log), 0,
141     "Log"},
142    {NULL}  /* Sentinel */
143};
144
145/** Read double from PyObject
146    @param p PyObject
147    @return double
148*/
149double CCoreShellEllipsoidModel_readDouble(PyObject *p) {
150    if (PyFloat_Check(p)==1) {
151        return (double)(((PyFloatObject *)(p))->ob_fval);
152    } else if (PyInt_Check(p)==1) {
153        return (double)(((PyIntObject *)(p))->ob_ival);
154    } else if (PyLong_Check(p)==1) {
155        return (double)PyLong_AsLong(p);
156    } else {
157        return 0.0;
158    }
159}
160/**
161 * Function to call to evaluate model
162 * @param args: input numpy array q[]
163 * @return: numpy array object
164 */
165 
166static PyObject *evaluateOneDim(CoreShellEllipsoidModel* model, PyArrayObject *q){
167    PyArrayObject *result;
168   
169    // Check validity of array q , q must be of dimension 1, an array of double
170    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
171    {
172        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
173        //PyErr_SetString(PyExc_ValueError , message);
174        return NULL;
175    }
176    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
177                                                                                  PyArray_DOUBLE);
178        if (result == NULL) {
179        const char * message= "Could not create result ";
180        PyErr_SetString(PyExc_RuntimeError , message);
181                return NULL;
182        }
183         for (int i = 0; i < q->dimensions[0]; i++){
184      double q_value  = *(double *)(q->data + i*q->strides[0]);
185      double *result_value = (double *)(result->data + i*result->strides[0]);
186      *result_value =(*model)(q_value);
187        }
188    return PyArray_Return(result); 
189 }
190
191 /**
192 * Function to call to evaluate model
193 * @param args: input numpy array  [x[],y[]]
194 * @return: numpy array object
195 */
196 static PyObject * evaluateTwoDimXY( CoreShellEllipsoidModel* model, 
197                              PyArrayObject *x, PyArrayObject *y)
198 {
199    PyArrayObject *result;
200    int i,j, x_len, y_len, dims[2];
201    //check validity of input vectors
202    if (x->nd != 2 || x->descr->type_num != PyArray_DOUBLE
203        || y->nd != 2 || y->descr->type_num != PyArray_DOUBLE
204        || y->dimensions[1] != x->dimensions[0]){
205        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
206        PyErr_SetString(PyExc_ValueError , message); 
207        return NULL;
208    }
209   
210        if (PyArray_Check(x) && PyArray_Check(y)) {
211               
212            x_len = dims[1]= x->dimensions[1];
213        y_len = dims[0]= y->dimensions[0];
214           
215            // Make a new double matrix of same dims
216        result=(PyArrayObject *) PyArray_FromDims(2,dims,NPY_DOUBLE);
217        if (result == NULL){
218            const char * message= "Could not create result ";
219        PyErr_SetString(PyExc_RuntimeError , message);
220            return NULL;
221            }
222       
223        /* Do the calculation. */
224        for ( j=0; j< y_len; j++) {
225            for ( i=0; i< x_len; i++) {
226                double x_value = *(double *)(x->data + i*x->strides[1]);
227                    double y_value = *(double *)(y->data + j*y->strides[0]);
228                        double *result_value = (double *)(result->data +
229                              j*result->strides[0] + i*result->strides[1]);
230                        *result_value = (*model)(x_value, y_value);
231            }           
232        }
233        return PyArray_Return(result); 
234       
235        }else{
236                    PyErr_SetString(CCoreShellEllipsoidModelError, 
237                   "CCoreShellEllipsoidModel.evaluateTwoDimXY couldn't run.");
238                return NULL;
239                }       
240}
241/**
242 *  evalDistribution function evaluate a model function with input vector
243 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
244 *
245 */ 
246static PyObject * evalDistribution(CCoreShellEllipsoidModel *self, PyObject *args){
247        PyObject *qx, *qy;
248        PyArrayObject * pars;
249        int npars ,mpars;
250       
251        // Get parameters
252       
253            // Reader parameter dictionary
254    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
255    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
256    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
257    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
258    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
259    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
260    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
261    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
262    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
263    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
264    // Read in dispersion parameters
265    PyObject* disp_dict;
266    DispersionVisitor* visitor = new DispersionVisitor();
267    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
268    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
269    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
270    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
271    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
272    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
273    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
274    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
275    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
276    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
277    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
278    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
279
280       
281        // Get input and determine whether we have to supply a 1D or 2D return value.
282        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
283            PyErr_SetString(CCoreShellEllipsoidModelError, 
284                "CCoreShellEllipsoidModel.evalDistribution expects a q value.");
285                return NULL;
286        }
287    // Check params
288       
289    if(PyArray_Check(pars)==1) {
290               
291            // Length of list should 1 or 2
292            npars = pars->nd; 
293            if(npars==1) {
294                // input is a numpy array
295                if (PyArray_Check(pars)) {
296                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
297                    }
298                }else{
299                    PyErr_SetString(CCoreShellEllipsoidModelError, 
300                   "CCoreShellEllipsoidModel.evalDistribution expect numpy array of one dimension.");
301                return NULL;
302                }
303    }else if( PyList_Check(pars)==1) {
304        // Length of list should be 2 for I(qx,qy)
305            mpars = PyList_GET_SIZE(pars); 
306            if(mpars!=2) {
307                PyErr_SetString(CCoreShellEllipsoidModelError, 
308                        "CCoreShellEllipsoidModel.evalDistribution expects a list of dimension 2.");
309                return NULL;
310            }
311             qx = PyList_GET_ITEM(pars,0);
312             qy = PyList_GET_ITEM(pars,1);
313             if (PyArray_Check(qx) && PyArray_Check(qy)) {
314                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
315                           (PyArrayObject*)qy);
316                 }else{
317                    PyErr_SetString(CCoreShellEllipsoidModelError, 
318                   "CCoreShellEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
319                return NULL;
320             }
321        }
322        PyErr_SetString(CCoreShellEllipsoidModelError, 
323                   "CCoreShellEllipsoidModel.evalDistribution couln't be run.");
324        return NULL;
325       
326}
327
328/**
329 * Function to call to evaluate model
330 * @param args: input q or [q,phi]
331 * @return: function value
332 */
333static PyObject * run(CCoreShellEllipsoidModel *self, PyObject *args) {
334        double q_value, phi_value;
335        PyObject* pars;
336        int npars;
337       
338        // Get parameters
339       
340            // Reader parameter dictionary
341    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
342    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
343    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
344    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
345    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
346    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
347    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
348    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
349    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
350    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
351    // Read in dispersion parameters
352    PyObject* disp_dict;
353    DispersionVisitor* visitor = new DispersionVisitor();
354    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
355    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
356    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
357    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
358    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
359    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
360    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
361    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
362    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
363    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
364    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
365    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
366
367       
368        // Get input and determine whether we have to supply a 1D or 2D return value.
369        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
370            PyErr_SetString(CCoreShellEllipsoidModelError, 
371                "CCoreShellEllipsoidModel.run expects a q value.");
372                return NULL;
373        }
374         
375        // Check params
376        if( PyList_Check(pars)==1) {
377               
378                // Length of list should be 2 for I(q,phi)
379            npars = PyList_GET_SIZE(pars); 
380            if(npars!=2) {
381                PyErr_SetString(CCoreShellEllipsoidModelError, 
382                        "CCoreShellEllipsoidModel.run expects a double or a list of dimension 2.");
383                return NULL;
384            }
385            // We have a vector q, get the q and phi values at which
386            // to evaluate I(q,phi)
387            q_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
388            phi_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
389            // Skip zero
390            if (q_value==0) {
391                return Py_BuildValue("d",0.0);
392            }
393                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
394
395        } else {
396
397                // We have a scalar q, we will evaluate I(q)
398                q_value = CCoreShellEllipsoidModel_readDouble(pars);           
399               
400                return Py_BuildValue("d",(*(self->model))(q_value));
401        }       
402}
403/**
404 * Function to call to calculate_ER
405 * @return: effective radius value
406 */
407static PyObject * calculate_ER(CCoreShellEllipsoidModel *self) {
408
409        PyObject* pars;
410        int npars;
411       
412        // Get parameters
413       
414            // Reader parameter dictionary
415    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
416    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
417    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
418    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
419    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
420    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
421    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
422    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
423    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
424    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
425    // Read in dispersion parameters
426    PyObject* disp_dict;
427    DispersionVisitor* visitor = new DispersionVisitor();
428    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
429    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
430    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
431    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
432    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
433    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
434    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
435    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
436    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
437    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
438    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
439    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
440
441               
442        return Py_BuildValue("d",(*(self->model)).calculate_ER());
443
444}
445/**
446 * Function to call to evaluate model in cartesian coordinates
447 * @param args: input q or [qx, qy]]
448 * @return: function value
449 */
450static PyObject * runXY(CCoreShellEllipsoidModel *self, PyObject *args) {
451        double qx_value, qy_value;
452        PyObject* pars;
453        int npars;
454       
455        // Get parameters
456       
457            // Reader parameter dictionary
458    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
459    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
460    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
461    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
462    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
463    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
464    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
465    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
466    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
467    self->model->contrast = PyFloat_AsDouble( PyDict_GetItemString(self->params, "contrast") );
468    // Read in dispersion parameters
469    PyObject* disp_dict;
470    DispersionVisitor* visitor = new DispersionVisitor();
471    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
472    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
473    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
474    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
475    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
476    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
477    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
478    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
479    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
480    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
481    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
482    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
483
484       
485        // Get input and determine whether we have to supply a 1D or 2D return value.
486        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
487            PyErr_SetString(CCoreShellEllipsoidModelError, 
488                "CCoreShellEllipsoidModel.run expects a q value.");
489                return NULL;
490        }
491         
492        // Check params
493        if( PyList_Check(pars)==1) {
494               
495                // Length of list should be 2 for I(qx, qy))
496            npars = PyList_GET_SIZE(pars); 
497            if(npars!=2) {
498                PyErr_SetString(CCoreShellEllipsoidModelError, 
499                        "CCoreShellEllipsoidModel.run expects a double or a list of dimension 2.");
500                return NULL;
501            }
502            // We have a vector q, get the qx and qy values at which
503            // to evaluate I(qx,qy)
504            qx_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
505            qy_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
506            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
507
508        } else {
509
510                // We have a scalar q, we will evaluate I(q)
511                qx_value = CCoreShellEllipsoidModel_readDouble(pars);           
512               
513                return Py_BuildValue("d",(*(self->model))(qx_value));
514        }       
515}
516
517static PyObject * reset(CCoreShellEllipsoidModel *self, PyObject *args) {
518   
519
520    return Py_BuildValue("d",0.0);
521}
522
523static PyObject * set_dispersion(CCoreShellEllipsoidModel *self, PyObject *args) {
524        PyObject * disp;
525        const char * par_name;
526
527        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
528            PyErr_SetString(CCoreShellEllipsoidModelError,
529                "CCoreShellEllipsoidModel.set_dispersion expects a DispersionModel object.");
530                return NULL;
531        }
532        void *temp = PyCObject_AsVoidPtr(disp);
533        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
534
535
536        // Ugliness necessary to go from python to C
537            // TODO: refactor this
538    if (!strcmp(par_name, "equat_core")) {
539        self->model->equat_core.dispersion = dispersion;
540    } else    if (!strcmp(par_name, "polar_core")) {
541        self->model->polar_core.dispersion = dispersion;
542    } else    if (!strcmp(par_name, "equat_shell")) {
543        self->model->equat_shell.dispersion = dispersion;
544    } else    if (!strcmp(par_name, "polar_shell")) {
545        self->model->polar_shell.dispersion = dispersion;
546    } else    if (!strcmp(par_name, "axis_phi")) {
547        self->model->axis_phi.dispersion = dispersion;
548    } else    if (!strcmp(par_name, "axis_theta")) {
549        self->model->axis_theta.dispersion = dispersion;
550    } else {
551            PyErr_SetString(CCoreShellEllipsoidModelError,
552                "CCoreShellEllipsoidModel.set_dispersion expects a valid parameter name.");
553                return NULL;
554        }
555
556        DispersionVisitor* visitor = new DispersionVisitor();
557        PyObject * disp_dict = PyDict_New();
558        dispersion->accept_as_source(visitor, dispersion, disp_dict);
559        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
560    return Py_BuildValue("i",1);
561}
562
563
564static PyMethodDef CCoreShellEllipsoidModel_methods[] = {
565    {"run",      (PyCFunction)run     , METH_VARARGS,
566      "Evaluate the model at a given Q or Q, phi"},
567    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
568      "Evaluate the model at a given Q or Qx, Qy"},
569    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
570      "Evaluate the model at a given Q or Q, phi"},
571     
572    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
573      "Evaluate the model at a given Q or Qx, Qy vector "},
574    {"reset",    (PyCFunction)reset   , METH_VARARGS,
575      "Reset pair correlation"},
576    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
577      "Set the dispersion model for a given parameter"},
578   {NULL}
579};
580
581static PyTypeObject CCoreShellEllipsoidModelType = {
582    PyObject_HEAD_INIT(NULL)
583    0,                         /*ob_size*/
584    "CCoreShellEllipsoidModel",             /*tp_name*/
585    sizeof(CCoreShellEllipsoidModel),             /*tp_basicsize*/
586    0,                         /*tp_itemsize*/
587    (destructor)CCoreShellEllipsoidModel_dealloc, /*tp_dealloc*/
588    0,                         /*tp_print*/
589    0,                         /*tp_getattr*/
590    0,                         /*tp_setattr*/
591    0,                         /*tp_compare*/
592    0,                         /*tp_repr*/
593    0,                         /*tp_as_number*/
594    0,                         /*tp_as_sequence*/
595    0,                         /*tp_as_mapping*/
596    0,                         /*tp_hash */
597    0,                         /*tp_call*/
598    0,                         /*tp_str*/
599    0,                         /*tp_getattro*/
600    0,                         /*tp_setattro*/
601    0,                         /*tp_as_buffer*/
602    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
603    "CCoreShellEllipsoidModel objects",           /* tp_doc */
604    0,                         /* tp_traverse */
605    0,                         /* tp_clear */
606    0,                         /* tp_richcompare */
607    0,                         /* tp_weaklistoffset */
608    0,                         /* tp_iter */
609    0,                         /* tp_iternext */
610    CCoreShellEllipsoidModel_methods,             /* tp_methods */
611    CCoreShellEllipsoidModel_members,             /* tp_members */
612    0,                         /* tp_getset */
613    0,                         /* tp_base */
614    0,                         /* tp_dict */
615    0,                         /* tp_descr_get */
616    0,                         /* tp_descr_set */
617    0,                         /* tp_dictoffset */
618    (initproc)CCoreShellEllipsoidModel_init,      /* tp_init */
619    0,                         /* tp_alloc */
620    CCoreShellEllipsoidModel_new,                 /* tp_new */
621};
622
623
624//static PyMethodDef module_methods[] = {
625//    {NULL}
626//};
627
628/**
629 * Function used to add the model class to a module
630 * @param module: module to add the class to
631 */ 
632void addCCoreShellEllipsoidModel(PyObject *module) {
633        PyObject *d;
634       
635    if (PyType_Ready(&CCoreShellEllipsoidModelType) < 0)
636        return;
637
638    Py_INCREF(&CCoreShellEllipsoidModelType);
639    PyModule_AddObject(module, "CCoreShellEllipsoidModel", (PyObject *)&CCoreShellEllipsoidModelType);
640   
641    d = PyModule_GetDict(module);
642    CCoreShellEllipsoidModelError = PyErr_NewException("CCoreShellEllipsoidModel.error", NULL, NULL);
643    PyDict_SetItemString(d, "CCoreShellEllipsoidModelError", CCoreShellEllipsoidModelError);
644}
645
Note: See TracBrowser for help on using the repository browser.