source: sasview/sansmodels/src/sans/models/c_models/CCoreShellEllipsoidModel.cpp @ 0b082f3

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 0b082f3 was 0b082f3, checked in by Mathieu Doucet <doucetm@…>, 13 years ago

Re #7 Enable openmp for all models

  • Property mode set to 100644
File size: 28.3 KB
Line 
1/**
2        This software was developed by the University of Tennessee as part of the
3        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
4        project funded by the US National Science Foundation.
5
6        If you use DANSE applications to do scientific research that leads to
7        publication, we ask that you acknowledge the use of the software with the
8        following sentence:
9
10        "This work benefited from DANSE software developed under NSF award DMR-0520547."
11
12        copyright 2008, University of Tennessee
13 */
14
15/** CCoreShellEllipsoidModel
16 *
17 * C extension
18 *
19 * WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
20 *          DO NOT MODIFY THIS FILE, MODIFY spheroid.h
21 *          AND RE-RUN THE GENERATOR SCRIPT
22 *
23 */
24#define NO_IMPORT_ARRAY
25#define PY_ARRAY_UNIQUE_SYMBOL PyArray_API_sans
26 
27extern "C" {
28#include <Python.h>
29#include <arrayobject.h>
30#include "structmember.h"
31#include <stdio.h>
32#include <stdlib.h>
33#include <math.h>
34#include <time.h>
35#include "spheroid.h"
36}
37
38#include "models.hh"
39#include "dispersion_visitor.hh"
40
41/// Error object for raised exceptions
42static PyObject * CCoreShellEllipsoidModelError = NULL;
43
44
45// Class definition
46typedef struct {
47    PyObject_HEAD
48    /// Parameters
49    PyObject * params;
50    /// Dispersion parameters
51    PyObject * dispersion;
52    /// Underlying model object
53    CoreShellEllipsoidModel * model;
54    /// Log for unit testing
55    PyObject * log;
56} CCoreShellEllipsoidModel;
57
58
59static void
60CCoreShellEllipsoidModel_dealloc(CCoreShellEllipsoidModel* self)
61{
62    Py_DECREF(self->params);
63    Py_DECREF(self->dispersion);
64    Py_DECREF(self->log);
65    delete self->model;
66    self->ob_type->tp_free((PyObject*)self);
67   
68
69}
70
71static PyObject *
72CCoreShellEllipsoidModel_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
73{
74    CCoreShellEllipsoidModel *self;
75   
76    self = (CCoreShellEllipsoidModel *)type->tp_alloc(type, 0);
77   
78    return (PyObject *)self;
79}
80
81static int
82CCoreShellEllipsoidModel_init(CCoreShellEllipsoidModel *self, PyObject *args, PyObject *kwds)
83{
84    if (self != NULL) {
85       
86        // Create parameters
87        self->params = PyDict_New();
88        self->dispersion = PyDict_New();
89        self->model = new CoreShellEllipsoidModel();
90       
91        // Initialize parameter dictionary
92        PyDict_SetItemString(self->params,"scale",Py_BuildValue("d",1.000000000000));
93        PyDict_SetItemString(self->params,"sld_core",Py_BuildValue("d",0.000002000000));
94        PyDict_SetItemString(self->params,"axis_theta",Py_BuildValue("d",0.000000000000));
95        PyDict_SetItemString(self->params,"polar_shell",Py_BuildValue("d",30.000000000000));
96        PyDict_SetItemString(self->params,"sld_solvent",Py_BuildValue("d",0.000006300000));
97        PyDict_SetItemString(self->params,"equat_shell",Py_BuildValue("d",250.000000000000));
98        PyDict_SetItemString(self->params,"axis_phi",Py_BuildValue("d",0.000000000000));
99        PyDict_SetItemString(self->params,"background",Py_BuildValue("d",0.001000000000));
100        PyDict_SetItemString(self->params,"equat_core",Py_BuildValue("d",200.000000000000));
101        PyDict_SetItemString(self->params,"polar_core",Py_BuildValue("d",20.000000000000));
102        PyDict_SetItemString(self->params,"sld_shell",Py_BuildValue("d",0.000001000000));
103        // Initialize dispersion / averaging parameter dict
104        DispersionVisitor* visitor = new DispersionVisitor();
105        PyObject * disp_dict;
106        disp_dict = PyDict_New();
107        self->model->equat_core.dispersion->accept_as_source(visitor, self->model->equat_core.dispersion, disp_dict);
108        PyDict_SetItemString(self->dispersion, "equat_core", disp_dict);
109        disp_dict = PyDict_New();
110        self->model->polar_core.dispersion->accept_as_source(visitor, self->model->polar_core.dispersion, disp_dict);
111        PyDict_SetItemString(self->dispersion, "polar_core", disp_dict);
112        disp_dict = PyDict_New();
113        self->model->equat_shell.dispersion->accept_as_source(visitor, self->model->equat_shell.dispersion, disp_dict);
114        PyDict_SetItemString(self->dispersion, "equat_shell", disp_dict);
115        disp_dict = PyDict_New();
116        self->model->polar_shell.dispersion->accept_as_source(visitor, self->model->polar_shell.dispersion, disp_dict);
117        PyDict_SetItemString(self->dispersion, "polar_shell", disp_dict);
118        disp_dict = PyDict_New();
119        self->model->axis_phi.dispersion->accept_as_source(visitor, self->model->axis_phi.dispersion, disp_dict);
120        PyDict_SetItemString(self->dispersion, "axis_phi", disp_dict);
121        disp_dict = PyDict_New();
122        self->model->axis_theta.dispersion->accept_as_source(visitor, self->model->axis_theta.dispersion, disp_dict);
123        PyDict_SetItemString(self->dispersion, "axis_theta", disp_dict);
124
125
126         
127        // Create empty log
128        self->log = PyDict_New();
129       
130       
131
132    }
133    return 0;
134}
135
136static char name_params[] = "params";
137static char def_params[] = "Parameters";
138static char name_dispersion[] = "dispersion";
139static char def_dispersion[] = "Dispersion parameters";
140static char name_log[] = "log";
141static char def_log[] = "Log";
142
143static PyMemberDef CCoreShellEllipsoidModel_members[] = {
144    {name_params, T_OBJECT, offsetof(CCoreShellEllipsoidModel, params), 0, def_params},
145        {name_dispersion, T_OBJECT, offsetof(CCoreShellEllipsoidModel, dispersion), 0, def_dispersion},     
146    {name_log, T_OBJECT, offsetof(CCoreShellEllipsoidModel, log), 0, def_log},
147    {NULL}  /* Sentinel */
148};
149
150/** Read double from PyObject
151    @param p PyObject
152    @return double
153*/
154double CCoreShellEllipsoidModel_readDouble(PyObject *p) {
155    if (PyFloat_Check(p)==1) {
156        return (double)(((PyFloatObject *)(p))->ob_fval);
157    } else if (PyInt_Check(p)==1) {
158        return (double)(((PyIntObject *)(p))->ob_ival);
159    } else if (PyLong_Check(p)==1) {
160        return (double)PyLong_AsLong(p);
161    } else {
162        return 0.0;
163    }
164}
165/**
166 * Function to call to evaluate model
167 * @param args: input numpy array q[]
168 * @return: numpy array object
169 */
170 
171static PyObject *evaluateOneDim(CoreShellEllipsoidModel* model, PyArrayObject *q){
172    PyArrayObject *result;
173   
174    // Check validity of array q , q must be of dimension 1, an array of double
175    if (q->nd != 1 || q->descr->type_num != PyArray_DOUBLE)
176    {
177        //const char * message= "Invalid array: q->nd=%d,type_num=%d\n",q->nd,q->descr->type_num;
178        //PyErr_SetString(PyExc_ValueError , message);
179        return NULL;
180    }
181    result = (PyArrayObject *)PyArray_FromDims(q->nd, (int *)(q->dimensions), 
182                                                                                  PyArray_DOUBLE);
183        if (result == NULL) {
184        const char * message= "Could not create result ";
185        PyErr_SetString(PyExc_RuntimeError , message);
186                return NULL;
187        }
188#pragma omp parallel for
189         for (int i = 0; i < q->dimensions[0]; i++){
190      double q_value  = *(double *)(q->data + i*q->strides[0]);
191      double *result_value = (double *)(result->data + i*result->strides[0]);
192      *result_value =(*model)(q_value);
193        }
194    return PyArray_Return(result); 
195 }
196
197 /**
198 * Function to call to evaluate model
199 * @param args: input numpy array  [x[],y[]]
200 * @return: numpy array object
201 */
202 static PyObject * evaluateTwoDimXY( CoreShellEllipsoidModel* model, 
203                              PyArrayObject *x, PyArrayObject *y)
204 {
205    PyArrayObject *result;
206    int x_len, y_len, dims[1];
207    //check validity of input vectors
208    if (x->nd != 1 || x->descr->type_num != PyArray_DOUBLE
209        || y->nd != 1 || y->descr->type_num != PyArray_DOUBLE
210        || y->dimensions[0] != x->dimensions[0]){
211        const char * message= "evaluateTwoDimXY  expect 2 numpy arrays";
212        PyErr_SetString(PyExc_ValueError , message); 
213        return NULL;
214    }
215   
216        if (PyArray_Check(x) && PyArray_Check(y)) {
217               
218            x_len = dims[0]= x->dimensions[0];
219        y_len = dims[0]= y->dimensions[0];
220           
221            // Make a new double matrix of same dims
222        result=(PyArrayObject *) PyArray_FromDims(1,dims,NPY_DOUBLE);
223        if (result == NULL){
224            const char * message= "Could not create result ";
225        PyErr_SetString(PyExc_RuntimeError , message);
226            return NULL;
227            }
228       
229        /* Do the calculation. */
230#pragma omp parallel for
231        for (int i=0; i< x_len; i++) {
232            double x_value = *(double *)(x->data + i*x->strides[0]);
233                    double y_value = *(double *)(y->data + i*y->strides[0]);
234                        double *result_value = (double *)(result->data +
235                              i*result->strides[0]);
236                        *result_value = (*model)(x_value, y_value);
237        }           
238        return PyArray_Return(result); 
239       
240        }else{
241                    PyErr_SetString(CCoreShellEllipsoidModelError, 
242                   "CCoreShellEllipsoidModel.evaluateTwoDimXY couldn't run.");
243                return NULL;
244                }       
245}
246/**
247 *  evalDistribution function evaluate a model function with input vector
248 *  @param args: input q as vector or [qx, qy] where qx, qy are vectors
249 *
250 */ 
251static PyObject * evalDistribution(CCoreShellEllipsoidModel *self, PyObject *args){
252        PyObject *qx, *qy;
253        PyArrayObject * pars;
254        int npars ,mpars;
255       
256        // Get parameters
257       
258            // Reader parameter dictionary
259    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
260    self->model->sld_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_core") );
261    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
262    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
263    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
264    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
265    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
266    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
267    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
268    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
269    self->model->sld_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_shell") );
270    // Read in dispersion parameters
271    PyObject* disp_dict;
272    DispersionVisitor* visitor = new DispersionVisitor();
273    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
274    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
275    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
276    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
277    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
278    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
279    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
280    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
281    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
282    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
283    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
284    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
285
286       
287        // Get input and determine whether we have to supply a 1D or 2D return value.
288        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
289            PyErr_SetString(CCoreShellEllipsoidModelError, 
290                "CCoreShellEllipsoidModel.evalDistribution expects a q value.");
291                return NULL;
292        }
293    // Check params
294       
295    if(PyArray_Check(pars)==1) {
296               
297            // Length of list should 1 or 2
298            npars = pars->nd; 
299            if(npars==1) {
300                // input is a numpy array
301                if (PyArray_Check(pars)) {
302                        return evaluateOneDim(self->model, (PyArrayObject*)pars); 
303                    }
304                }else{
305                    PyErr_SetString(CCoreShellEllipsoidModelError, 
306                   "CCoreShellEllipsoidModel.evalDistribution expect numpy array of one dimension.");
307                return NULL;
308                }
309    }else if( PyList_Check(pars)==1) {
310        // Length of list should be 2 for I(qx,qy)
311            mpars = PyList_GET_SIZE(pars); 
312            if(mpars!=2) {
313                PyErr_SetString(CCoreShellEllipsoidModelError, 
314                        "CCoreShellEllipsoidModel.evalDistribution expects a list of dimension 2.");
315                return NULL;
316            }
317             qx = PyList_GET_ITEM(pars,0);
318             qy = PyList_GET_ITEM(pars,1);
319             if (PyArray_Check(qx) && PyArray_Check(qy)) {
320                 return evaluateTwoDimXY(self->model, (PyArrayObject*)qx,
321                           (PyArrayObject*)qy);
322                 }else{
323                    PyErr_SetString(CCoreShellEllipsoidModelError, 
324                   "CCoreShellEllipsoidModel.evalDistribution expect 2 numpy arrays in list.");
325                return NULL;
326             }
327        }
328        PyErr_SetString(CCoreShellEllipsoidModelError, 
329                   "CCoreShellEllipsoidModel.evalDistribution couln't be run.");
330        return NULL;
331       
332}
333
334/**
335 * Function to call to evaluate model
336 * @param args: input q or [q,phi]
337 * @return: function value
338 */
339static PyObject * run(CCoreShellEllipsoidModel *self, PyObject *args) {
340        double q_value, phi_value;
341        PyObject* pars;
342        int npars;
343       
344        // Get parameters
345       
346            // Reader parameter dictionary
347    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
348    self->model->sld_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_core") );
349    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
350    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
351    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
352    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
353    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
354    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
355    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
356    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
357    self->model->sld_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_shell") );
358    // Read in dispersion parameters
359    PyObject* disp_dict;
360    DispersionVisitor* visitor = new DispersionVisitor();
361    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
362    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
363    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
364    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
365    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
366    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
367    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
368    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
369    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
370    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
371    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
372    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
373
374       
375        // Get input and determine whether we have to supply a 1D or 2D return value.
376        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
377            PyErr_SetString(CCoreShellEllipsoidModelError, 
378                "CCoreShellEllipsoidModel.run expects a q value.");
379                return NULL;
380        }
381         
382        // Check params
383        if( PyList_Check(pars)==1) {
384               
385                // Length of list should be 2 for I(q,phi)
386            npars = PyList_GET_SIZE(pars); 
387            if(npars!=2) {
388                PyErr_SetString(CCoreShellEllipsoidModelError, 
389                        "CCoreShellEllipsoidModel.run expects a double or a list of dimension 2.");
390                return NULL;
391            }
392            // We have a vector q, get the q and phi values at which
393            // to evaluate I(q,phi)
394            q_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
395            phi_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
396            // Skip zero
397            if (q_value==0) {
398                return Py_BuildValue("d",0.0);
399            }
400                return Py_BuildValue("d",(*(self->model)).evaluate_rphi(q_value,phi_value));
401
402        } else {
403
404                // We have a scalar q, we will evaluate I(q)
405                q_value = CCoreShellEllipsoidModel_readDouble(pars);           
406               
407                return Py_BuildValue("d",(*(self->model))(q_value));
408        }       
409}
410/**
411 * Function to call to calculate_ER
412 * @return: effective radius value
413 */
414static PyObject * calculate_ER(CCoreShellEllipsoidModel *self) {
415
416        // Get parameters
417       
418            // Reader parameter dictionary
419    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
420    self->model->sld_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_core") );
421    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
422    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
423    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
424    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
425    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
426    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
427    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
428    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
429    self->model->sld_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_shell") );
430    // Read in dispersion parameters
431    PyObject* disp_dict;
432    DispersionVisitor* visitor = new DispersionVisitor();
433    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
434    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
435    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
436    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
437    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
438    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
439    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
440    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
441    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
442    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
443    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
444    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
445
446               
447        return Py_BuildValue("d",(*(self->model)).calculate_ER());
448
449}
450/**
451 * Function to call to evaluate model in cartesian coordinates
452 * @param args: input q or [qx, qy]]
453 * @return: function value
454 */
455static PyObject * runXY(CCoreShellEllipsoidModel *self, PyObject *args) {
456        double qx_value, qy_value;
457        PyObject* pars;
458        int npars;
459       
460        // Get parameters
461       
462            // Reader parameter dictionary
463    self->model->scale = PyFloat_AsDouble( PyDict_GetItemString(self->params, "scale") );
464    self->model->sld_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_core") );
465    self->model->axis_theta = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_theta") );
466    self->model->polar_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_shell") );
467    self->model->sld_solvent = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_solvent") );
468    self->model->equat_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_shell") );
469    self->model->axis_phi = PyFloat_AsDouble( PyDict_GetItemString(self->params, "axis_phi") );
470    self->model->background = PyFloat_AsDouble( PyDict_GetItemString(self->params, "background") );
471    self->model->equat_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "equat_core") );
472    self->model->polar_core = PyFloat_AsDouble( PyDict_GetItemString(self->params, "polar_core") );
473    self->model->sld_shell = PyFloat_AsDouble( PyDict_GetItemString(self->params, "sld_shell") );
474    // Read in dispersion parameters
475    PyObject* disp_dict;
476    DispersionVisitor* visitor = new DispersionVisitor();
477    disp_dict = PyDict_GetItemString(self->dispersion, "equat_core");
478    self->model->equat_core.dispersion->accept_as_destination(visitor, self->model->equat_core.dispersion, disp_dict);
479    disp_dict = PyDict_GetItemString(self->dispersion, "polar_core");
480    self->model->polar_core.dispersion->accept_as_destination(visitor, self->model->polar_core.dispersion, disp_dict);
481    disp_dict = PyDict_GetItemString(self->dispersion, "equat_shell");
482    self->model->equat_shell.dispersion->accept_as_destination(visitor, self->model->equat_shell.dispersion, disp_dict);
483    disp_dict = PyDict_GetItemString(self->dispersion, "polar_shell");
484    self->model->polar_shell.dispersion->accept_as_destination(visitor, self->model->polar_shell.dispersion, disp_dict);
485    disp_dict = PyDict_GetItemString(self->dispersion, "axis_phi");
486    self->model->axis_phi.dispersion->accept_as_destination(visitor, self->model->axis_phi.dispersion, disp_dict);
487    disp_dict = PyDict_GetItemString(self->dispersion, "axis_theta");
488    self->model->axis_theta.dispersion->accept_as_destination(visitor, self->model->axis_theta.dispersion, disp_dict);
489
490       
491        // Get input and determine whether we have to supply a 1D or 2D return value.
492        if ( !PyArg_ParseTuple(args,"O",&pars) ) {
493            PyErr_SetString(CCoreShellEllipsoidModelError, 
494                "CCoreShellEllipsoidModel.run expects a q value.");
495                return NULL;
496        }
497         
498        // Check params
499        if( PyList_Check(pars)==1) {
500               
501                // Length of list should be 2 for I(qx, qy))
502            npars = PyList_GET_SIZE(pars); 
503            if(npars!=2) {
504                PyErr_SetString(CCoreShellEllipsoidModelError, 
505                        "CCoreShellEllipsoidModel.run expects a double or a list of dimension 2.");
506                return NULL;
507            }
508            // We have a vector q, get the qx and qy values at which
509            // to evaluate I(qx,qy)
510            qx_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,0));
511            qy_value = CCoreShellEllipsoidModel_readDouble(PyList_GET_ITEM(pars,1));
512            return Py_BuildValue("d",(*(self->model))(qx_value,qy_value));
513
514        } else {
515
516                // We have a scalar q, we will evaluate I(q)
517                qx_value = CCoreShellEllipsoidModel_readDouble(pars);           
518               
519                return Py_BuildValue("d",(*(self->model))(qx_value));
520        }       
521}
522
523static PyObject * reset(CCoreShellEllipsoidModel *self, PyObject *args) {
524   
525
526    return Py_BuildValue("d",0.0);
527}
528
529static PyObject * set_dispersion(CCoreShellEllipsoidModel *self, PyObject *args) {
530        PyObject * disp;
531        const char * par_name;
532
533        if ( !PyArg_ParseTuple(args,"sO", &par_name, &disp) ) {
534            PyErr_SetString(CCoreShellEllipsoidModelError,
535                "CCoreShellEllipsoidModel.set_dispersion expects a DispersionModel object.");
536                return NULL;
537        }
538        void *temp = PyCObject_AsVoidPtr(disp);
539        DispersionModel * dispersion = static_cast<DispersionModel *>(temp);
540
541
542        // Ugliness necessary to go from python to C
543            // TODO: refactor this
544    if (!strcmp(par_name, "equat_core")) {
545        self->model->equat_core.dispersion = dispersion;
546    } else    if (!strcmp(par_name, "polar_core")) {
547        self->model->polar_core.dispersion = dispersion;
548    } else    if (!strcmp(par_name, "equat_shell")) {
549        self->model->equat_shell.dispersion = dispersion;
550    } else    if (!strcmp(par_name, "polar_shell")) {
551        self->model->polar_shell.dispersion = dispersion;
552    } else    if (!strcmp(par_name, "axis_phi")) {
553        self->model->axis_phi.dispersion = dispersion;
554    } else    if (!strcmp(par_name, "axis_theta")) {
555        self->model->axis_theta.dispersion = dispersion;
556    } else {
557            PyErr_SetString(CCoreShellEllipsoidModelError,
558                "CCoreShellEllipsoidModel.set_dispersion expects a valid parameter name.");
559                return NULL;
560        }
561
562        DispersionVisitor* visitor = new DispersionVisitor();
563        PyObject * disp_dict = PyDict_New();
564        dispersion->accept_as_source(visitor, dispersion, disp_dict);
565        PyDict_SetItemString(self->dispersion, par_name, disp_dict);
566    return Py_BuildValue("i",1);
567}
568
569
570static PyMethodDef CCoreShellEllipsoidModel_methods[] = {
571    {"run",      (PyCFunction)run     , METH_VARARGS,
572      "Evaluate the model at a given Q or Q, phi"},
573    {"runXY",      (PyCFunction)runXY     , METH_VARARGS,
574      "Evaluate the model at a given Q or Qx, Qy"},
575    {"calculate_ER",      (PyCFunction)calculate_ER     , METH_VARARGS,
576      "Evaluate the model at a given Q or Q, phi"},
577     
578    {"evalDistribution",  (PyCFunction)evalDistribution , METH_VARARGS,
579      "Evaluate the model at a given Q or Qx, Qy vector "},
580    {"reset",    (PyCFunction)reset   , METH_VARARGS,
581      "Reset pair correlation"},
582    {"set_dispersion",      (PyCFunction)set_dispersion     , METH_VARARGS,
583      "Set the dispersion model for a given parameter"},
584   {NULL}
585};
586
587static PyTypeObject CCoreShellEllipsoidModelType = {
588    PyObject_HEAD_INIT(NULL)
589    0,                         /*ob_size*/
590    "CCoreShellEllipsoidModel",             /*tp_name*/
591    sizeof(CCoreShellEllipsoidModel),             /*tp_basicsize*/
592    0,                         /*tp_itemsize*/
593    (destructor)CCoreShellEllipsoidModel_dealloc, /*tp_dealloc*/
594    0,                         /*tp_print*/
595    0,                         /*tp_getattr*/
596    0,                         /*tp_setattr*/
597    0,                         /*tp_compare*/
598    0,                         /*tp_repr*/
599    0,                         /*tp_as_number*/
600    0,                         /*tp_as_sequence*/
601    0,                         /*tp_as_mapping*/
602    0,                         /*tp_hash */
603    0,                         /*tp_call*/
604    0,                         /*tp_str*/
605    0,                         /*tp_getattro*/
606    0,                         /*tp_setattro*/
607    0,                         /*tp_as_buffer*/
608    Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /*tp_flags*/
609    "CCoreShellEllipsoidModel objects",           /* tp_doc */
610    0,                         /* tp_traverse */
611    0,                         /* tp_clear */
612    0,                         /* tp_richcompare */
613    0,                         /* tp_weaklistoffset */
614    0,                         /* tp_iter */
615    0,                         /* tp_iternext */
616    CCoreShellEllipsoidModel_methods,             /* tp_methods */
617    CCoreShellEllipsoidModel_members,             /* tp_members */
618    0,                         /* tp_getset */
619    0,                         /* tp_base */
620    0,                         /* tp_dict */
621    0,                         /* tp_descr_get */
622    0,                         /* tp_descr_set */
623    0,                         /* tp_dictoffset */
624    (initproc)CCoreShellEllipsoidModel_init,      /* tp_init */
625    0,                         /* tp_alloc */
626    CCoreShellEllipsoidModel_new,                 /* tp_new */
627};
628
629
630//static PyMethodDef module_methods[] = {
631//    {NULL}
632//};
633
634/**
635 * Function used to add the model class to a module
636 * @param module: module to add the class to
637 */ 
638void addCCoreShellEllipsoidModel(PyObject *module) {
639        PyObject *d;
640       
641    if (PyType_Ready(&CCoreShellEllipsoidModelType) < 0)
642        return;
643
644    Py_INCREF(&CCoreShellEllipsoidModelType);
645    PyModule_AddObject(module, "CCoreShellEllipsoidModel", (PyObject *)&CCoreShellEllipsoidModelType);
646   
647    d = PyModule_GetDict(module);
648    static char error_name[] = "CCoreShellEllipsoidModel.error";
649    CCoreShellEllipsoidModelError = PyErr_NewException(error_name, NULL, NULL);
650    PyDict_SetItemString(d, "CCoreShellEllipsoidModelError", CCoreShellEllipsoidModelError);
651}
652
Note: See TracBrowser for help on using the repository browser.