1 | /** |
---|
2 | * Scattering model for a cylinder |
---|
3 | * @author: Mathieu Doucet / UTK |
---|
4 | */ |
---|
5 | |
---|
6 | #include "triaxial_ellipsoid.h" |
---|
7 | #include <math.h> |
---|
8 | #include "libCylinder.h" |
---|
9 | #include <stdio.h> |
---|
10 | #include <stdlib.h> |
---|
11 | |
---|
12 | |
---|
13 | /** |
---|
14 | * Function to evaluate 1D scattering function |
---|
15 | * @param pars: parameters of the triaxial ellipsoid |
---|
16 | * @param q: q-value |
---|
17 | * @return: function value |
---|
18 | */ |
---|
19 | double triaxial_ellipsoid_analytical_1D(TriaxialEllipsoidParameters *pars, double q) { |
---|
20 | double dp[6]; |
---|
21 | |
---|
22 | // Fill paramater array |
---|
23 | dp[0] = pars->scale; |
---|
24 | dp[1] = pars->semi_axisA; |
---|
25 | dp[2] = pars->semi_axisB; |
---|
26 | dp[3] = pars->semi_axisC; |
---|
27 | dp[4] = pars->contrast; |
---|
28 | dp[5] = pars->background; |
---|
29 | |
---|
30 | // Call library function to evaluate model |
---|
31 | return TriaxialEllipsoid(dp, q); |
---|
32 | } |
---|
33 | |
---|
34 | double triaxial_ellipsoid_kernel(TriaxialEllipsoidParameters *pars, double q, double alpha, double nu) { |
---|
35 | double t,a,b,c; |
---|
36 | double kernel; |
---|
37 | double pi = 4.0*atan(1.0); |
---|
38 | |
---|
39 | a = pars->semi_axisA ; |
---|
40 | b = pars->semi_axisB ; |
---|
41 | c = pars->semi_axisC ; |
---|
42 | |
---|
43 | t = q * sqrt(a*a*cos(nu)*cos(nu)+b*b*sin(nu)*sin(nu)*sin(alpha)*sin(alpha)+c*c*cos(alpha)*cos(alpha)); |
---|
44 | if (t==0.0){ |
---|
45 | kernel = 1.0; |
---|
46 | }else{ |
---|
47 | kernel = 3.0*(sin(t)-t*cos(t))/(t*t*t); |
---|
48 | } |
---|
49 | return kernel*kernel; |
---|
50 | } |
---|
51 | |
---|
52 | |
---|
53 | /** |
---|
54 | * Function to evaluate 2D scattering function |
---|
55 | * @param pars: parameters of the triaxial ellipsoid |
---|
56 | * @param q: q-value |
---|
57 | * @return: function value |
---|
58 | */ |
---|
59 | double triaxial_ellipsoid_analytical_2DXY(TriaxialEllipsoidParameters *pars, double qx, double qy) { |
---|
60 | double q; |
---|
61 | q = sqrt(qx*qx+qy*qy); |
---|
62 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
63 | } |
---|
64 | |
---|
65 | |
---|
66 | /** |
---|
67 | * Function to evaluate 2D scattering function |
---|
68 | * @param pars: parameters of the triaxial ellipsoid |
---|
69 | * @param q: q-value |
---|
70 | * @param phi: angle phi |
---|
71 | * @return: function value |
---|
72 | */ |
---|
73 | double triaxial_ellipsoid_analytical_2D(TriaxialEllipsoidParameters *pars, double q, double phi) { |
---|
74 | return triaxial_ellipsoid_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
75 | } |
---|
76 | |
---|
77 | /** |
---|
78 | * Function to evaluate 2D scattering function |
---|
79 | * @param pars: parameters of the triaxial ellipsoid |
---|
80 | * @param q: q-value |
---|
81 | * @param q_x: q_x / q |
---|
82 | * @param q_y: q_y / q |
---|
83 | * @return: function value |
---|
84 | */ |
---|
85 | double triaxial_ellipsoid_analytical_2D_scaled(TriaxialEllipsoidParameters *pars, double q, double q_x, double q_y) { |
---|
86 | double cyl_x, cyl_y, cyl_z, ell_x, ell_y; |
---|
87 | double q_z; |
---|
88 | double cos_nu,nu; |
---|
89 | double alpha, vol, cos_val; |
---|
90 | double answer; |
---|
91 | double pi = acos(-1.0); |
---|
92 | // Cylinder orientation |
---|
93 | cyl_x = sin(pars->axis_theta) * cos(pars->axis_phi); |
---|
94 | cyl_y = sin(pars->axis_theta) * sin(pars->axis_phi); |
---|
95 | cyl_z = cos(pars->axis_theta); |
---|
96 | |
---|
97 | // q vector |
---|
98 | q_z = 0; |
---|
99 | |
---|
100 | //dx = 1.0; |
---|
101 | //dy = 1.0; |
---|
102 | // Compute the angle btw vector q and the |
---|
103 | // axis of the cylinder |
---|
104 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
105 | |
---|
106 | // The following test should always pass |
---|
107 | if (fabs(cos_val)>1.0) { |
---|
108 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
109 | return 0; |
---|
110 | } |
---|
111 | |
---|
112 | // Note: cos(alpha) = 0 and 1 will get an |
---|
113 | // undefined value from CylKernel |
---|
114 | alpha = acos( cos_val ); |
---|
115 | |
---|
116 | //ellipse orientation: |
---|
117 | // the elliptical corss section was transformed and projected |
---|
118 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
119 | // on the detector plane. |
---|
120 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
121 | // the wave vector q. |
---|
122 | |
---|
123 | //x- y- component on the detector plane. |
---|
124 | ell_x = cos(pars->axis_psi); |
---|
125 | ell_y = sin(pars->axis_psi); |
---|
126 | |
---|
127 | // calculate the axis of the ellipse wrt q-coord. |
---|
128 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
129 | nu = acos(cos_nu); |
---|
130 | |
---|
131 | // Call the IGOR library function to get the kernel |
---|
132 | answer = triaxial_ellipsoid_kernel(pars, q, alpha, nu); |
---|
133 | |
---|
134 | // Multiply by contrast^2 |
---|
135 | answer *= pars->contrast*pars->contrast; |
---|
136 | |
---|
137 | //normalize by cylinder volume |
---|
138 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
139 | vol = 4.0* pi/3.0 * pars->semi_axisA * pars->semi_axisB * pars->semi_axisC; |
---|
140 | answer *= vol; |
---|
141 | //convert to [cm-1] |
---|
142 | answer *= 1.0e8; |
---|
143 | //Scale |
---|
144 | answer *= pars->scale; |
---|
145 | |
---|
146 | // add in the background |
---|
147 | answer += pars->background; |
---|
148 | |
---|
149 | return answer; |
---|
150 | } |
---|