1 | /** |
---|
2 | * Scattering model for a sphere |
---|
3 | */ |
---|
4 | |
---|
5 | #include <math.h> |
---|
6 | #include "onion.h" |
---|
7 | #include <stdio.h> |
---|
8 | #include <stdlib.h> |
---|
9 | |
---|
10 | double so_kernel(double dp[], double q) { |
---|
11 | int n = dp[0]; |
---|
12 | double scale = dp[1]; |
---|
13 | double rad_core0 = dp[2]; |
---|
14 | double sld_core0 = dp[3]; |
---|
15 | double sld_solv = dp[4]; |
---|
16 | double background = dp[5]; |
---|
17 | double sld_out[n+2]; |
---|
18 | double slope[n+2]; |
---|
19 | double sld_in[n+2]; |
---|
20 | double thick[n+2]; |
---|
21 | double A[n+2]; |
---|
22 | int fun_type[n+2]; |
---|
23 | int i,j; |
---|
24 | |
---|
25 | for (i =1; i<=n; i++){ |
---|
26 | sld_out[i] = dp[i+5]; |
---|
27 | sld_in[i] = dp[i+15]; |
---|
28 | A[i] = dp[i+25]; |
---|
29 | thick[i] = dp[i+35]; |
---|
30 | fun_type[i] = dp[i+45]; |
---|
31 | } |
---|
32 | sld_out[0] = sld_core0; |
---|
33 | sld_out[n+1] = sld_solv; |
---|
34 | sld_in[0] = sld_core0; |
---|
35 | sld_in[n+1] = sld_solv; |
---|
36 | thick[0] = rad_core0; |
---|
37 | thick[n+1] = 1e+10; |
---|
38 | A[0] = 0.0; |
---|
39 | A[n+1] = 0.0; |
---|
40 | fun_type[0] = 0; |
---|
41 | fun_type[n+1] = 0; |
---|
42 | |
---|
43 | double bes,fun,alpha,f,vol,vol_pre,vol_sub,qr,r,contr,f2; |
---|
44 | double sign; |
---|
45 | double pi; |
---|
46 | |
---|
47 | pi = 4.0*atan(1.0); |
---|
48 | f = 0.0; |
---|
49 | r = 0.0; |
---|
50 | vol = 0.0; |
---|
51 | vol_pre = 0.0; |
---|
52 | vol_sub = 0.0; |
---|
53 | double r0 = 0.0; |
---|
54 | |
---|
55 | for (i =0; i<= n+1; i++){ |
---|
56 | if (thick[i] == 0.0){ |
---|
57 | continue; |
---|
58 | } |
---|
59 | if (fun_type[i]== 0 ){ |
---|
60 | slope[i] = 0.0; |
---|
61 | A[i] = 0.0; |
---|
62 | } |
---|
63 | vol_pre = vol; |
---|
64 | switch(fun_type[i]){ |
---|
65 | case 2 : |
---|
66 | r0 = r; |
---|
67 | if (A[i] == 0.0){ |
---|
68 | slope[i] = 0.0; |
---|
69 | } |
---|
70 | else{ |
---|
71 | slope[i] = (sld_out[i]-sld_in[i])/(exp(A[i])-1.0); |
---|
72 | } |
---|
73 | for (j=0; j<2; j++){ |
---|
74 | if ( i == 0 && j == 0){ |
---|
75 | continue; |
---|
76 | } |
---|
77 | if (i == n+1 && j == 1){ |
---|
78 | continue; |
---|
79 | } |
---|
80 | if ( j == 1){ |
---|
81 | sign = 1.0; |
---|
82 | r += thick[i]; |
---|
83 | } |
---|
84 | else{ |
---|
85 | sign = -1.0; |
---|
86 | } |
---|
87 | qr = q * r; |
---|
88 | alpha = A[i] * r/thick[i]; |
---|
89 | fun = 0.0; |
---|
90 | if(qr == 0.0){ |
---|
91 | fun = sign * 1.0; |
---|
92 | bes = sign * 1.0; |
---|
93 | } |
---|
94 | else{ |
---|
95 | if (fabs(A[i]) > 0.0 ){ |
---|
96 | fun = 3.0 * ((alpha*alpha - qr * qr) * sin(qr) - 2.0 * alpha * qr * cos(qr))/ ((alpha * alpha + qr * qr) * (alpha * alpha + qr * qr) * qr); |
---|
97 | fun = fun - 3.0 * (alpha * sin(qr) - qr * cos(qr)) / ((alpha * alpha + qr * qr) * qr); |
---|
98 | fun = - sign *fun; |
---|
99 | bes = sign * 3.0 * (sin(qr) - qr * cos(qr)) / (qr * qr * qr); |
---|
100 | } |
---|
101 | else { |
---|
102 | fun = sign * 3.0 * (sin(qr) - qr * cos(qr)) / (qr * qr * qr); |
---|
103 | bes = sign * 3.0 * (sin(qr) - qr * cos(qr)) / (qr * qr * qr); |
---|
104 | } |
---|
105 | } |
---|
106 | contr = slope[i]*exp(A[i]*(r-r0)/thick[i]); |
---|
107 | |
---|
108 | vol = 4.0 * pi / 3.0 * r * r * r; |
---|
109 | if (j == 1 && fabs(sld_in[i]-sld_solv) < 1e-04*fabs(sld_solv) && A[i]==0.0){ |
---|
110 | vol_sub += (vol_pre - vol); |
---|
111 | } |
---|
112 | f += vol * (contr * (fun) + (sld_in[i]-slope[i]) * bes); |
---|
113 | } |
---|
114 | break; |
---|
115 | default : |
---|
116 | if (fun_type[i]==0){ |
---|
117 | slope[i] = 0.0; |
---|
118 | } |
---|
119 | else{ |
---|
120 | slope[i]= (sld_out[i] -sld_in[i])/thick[i]; |
---|
121 | } |
---|
122 | contr = sld_in[i]-slope[i]*r; |
---|
123 | for (j=0; j<2; j++){ |
---|
124 | if ( i == 0 && j == 0){ |
---|
125 | continue; |
---|
126 | } |
---|
127 | if (i == n+1 && j == 1){ |
---|
128 | continue; |
---|
129 | } |
---|
130 | if ( j == 1){ |
---|
131 | sign = 1.0; |
---|
132 | r += thick[i]; |
---|
133 | } |
---|
134 | else{ |
---|
135 | sign = -1.0; |
---|
136 | } |
---|
137 | |
---|
138 | qr = q * r; |
---|
139 | fun = 0.0; |
---|
140 | if(qr == 0.0){ |
---|
141 | bes = sign * 1.0; |
---|
142 | } |
---|
143 | else{ |
---|
144 | bes = sign * 3.0 * (sin(qr) - qr * cos(qr)) / (qr * qr * qr); |
---|
145 | if (fabs(slope[i]) > 0.0 ){ |
---|
146 | fun = sign * 3.0 * r * (2.0*qr*sin(qr)-((qr*qr)-2.0)*cos(qr))/(qr * qr * qr * qr); |
---|
147 | } |
---|
148 | } |
---|
149 | vol = 4.0 * pi / 3.0 * r * r * r; |
---|
150 | if (j == 1 && fabs(sld_in[i]-sld_solv) < 1e-04*fabs(sld_solv) && fun_type[i]==0){ |
---|
151 | vol_sub += (vol_pre - vol); |
---|
152 | } |
---|
153 | f += vol * (bes * contr + fun * slope[i]); |
---|
154 | } |
---|
155 | break; |
---|
156 | } |
---|
157 | |
---|
158 | } |
---|
159 | vol += vol_sub; |
---|
160 | f2 = f * f / vol * 1.0e8; |
---|
161 | f2 *= scale; |
---|
162 | f2 += background; |
---|
163 | return (f2); |
---|
164 | } |
---|
165 | /** |
---|
166 | * Function to evaluate 1D scattering function |
---|
167 | * @param pars: parameters of the sphere |
---|
168 | * @param q: q-value |
---|
169 | * @return: function value |
---|
170 | */ |
---|
171 | double onion_analytical_1D(OnionParameters *pars, double q) { |
---|
172 | double dp[56]; |
---|
173 | |
---|
174 | dp[0] = pars->n_shells; |
---|
175 | dp[1] = pars->scale; |
---|
176 | dp[2] = pars->rad_core0; |
---|
177 | dp[3] = pars->sld_core0; |
---|
178 | dp[4] = pars->sld_solv; |
---|
179 | dp[5] = pars->background; |
---|
180 | |
---|
181 | dp[6] = pars->sld_out_shell1; |
---|
182 | dp[7] = pars->sld_out_shell2; |
---|
183 | dp[8] = pars->sld_out_shell3; |
---|
184 | dp[9] = pars->sld_out_shell4; |
---|
185 | dp[10] = pars->sld_out_shell5; |
---|
186 | dp[11] = pars->sld_out_shell6; |
---|
187 | dp[12] = pars->sld_out_shell7; |
---|
188 | dp[13] = pars->sld_out_shell8; |
---|
189 | dp[14] = pars->sld_out_shell9; |
---|
190 | dp[15] = pars->sld_out_shell10; |
---|
191 | |
---|
192 | dp[16] = pars->sld_in_shell1; |
---|
193 | dp[17] = pars->sld_in_shell2; |
---|
194 | dp[18] = pars->sld_in_shell3; |
---|
195 | dp[19] = pars->sld_in_shell4; |
---|
196 | dp[20] = pars->sld_in_shell5; |
---|
197 | dp[21] = pars->sld_in_shell6; |
---|
198 | dp[22] = pars->sld_in_shell7; |
---|
199 | dp[23] = pars->sld_in_shell8; |
---|
200 | dp[24] = pars->sld_in_shell9; |
---|
201 | dp[25] = pars->sld_in_shell10; |
---|
202 | |
---|
203 | dp[26] = pars->A_shell1; |
---|
204 | dp[27] = pars->A_shell2; |
---|
205 | dp[28] = pars->A_shell3; |
---|
206 | dp[29] = pars->A_shell4; |
---|
207 | dp[30] = pars->A_shell5; |
---|
208 | dp[31] = pars->A_shell6; |
---|
209 | dp[32] = pars->A_shell7; |
---|
210 | dp[33] = pars->A_shell8; |
---|
211 | dp[34] = pars->A_shell9; |
---|
212 | dp[35] = pars->A_shell10; |
---|
213 | |
---|
214 | dp[36] = pars->thick_shell1; |
---|
215 | dp[37] = pars->thick_shell2; |
---|
216 | dp[38] = pars->thick_shell3; |
---|
217 | dp[39] = pars->thick_shell4; |
---|
218 | dp[40] = pars->thick_shell5; |
---|
219 | dp[41] = pars->thick_shell6; |
---|
220 | dp[42] = pars->thick_shell7; |
---|
221 | dp[43] = pars->thick_shell8; |
---|
222 | dp[44] = pars->thick_shell9; |
---|
223 | dp[45] = pars->thick_shell10; |
---|
224 | |
---|
225 | dp[46] = pars->func_shell1; |
---|
226 | dp[47] = pars->func_shell2; |
---|
227 | dp[48] = pars->func_shell3; |
---|
228 | dp[49] = pars->func_shell4; |
---|
229 | dp[50] = pars->func_shell5; |
---|
230 | dp[51] = pars->func_shell6; |
---|
231 | dp[52] = pars->func_shell7; |
---|
232 | dp[53] = pars->func_shell8; |
---|
233 | dp[54] = pars->func_shell9; |
---|
234 | dp[55] = pars->func_shell10; |
---|
235 | |
---|
236 | return so_kernel(dp, q); |
---|
237 | } |
---|
238 | |
---|
239 | /** |
---|
240 | * Function to evaluate 2D scattering function |
---|
241 | * @param pars: parameters of the sphere |
---|
242 | * @param q: q-value |
---|
243 | * @return: function value |
---|
244 | */ |
---|
245 | double onion_analytical_2D(OnionParameters *pars, double q, double phi) { |
---|
246 | return onion_analytical_1D(pars,q); |
---|
247 | } |
---|
248 | |
---|
249 | double onion_analytical_2DXY(OnionParameters *pars, double qx, double qy){ |
---|
250 | return onion_analytical_1D(pars,sqrt(qx*qx+qy*qy)); |
---|
251 | } |
---|