1 | // The original code, of which work was not DANSE funded, |
---|
2 | // was provided by J. Cho. |
---|
3 | // And modified to fit sansmodels/sansview: JC |
---|
4 | |
---|
5 | #include <math.h> |
---|
6 | #include "libmultifunc/librefl.h" |
---|
7 | #include <stdio.h> |
---|
8 | #include <stdlib.h> |
---|
9 | #if defined(_MSC_VER) |
---|
10 | #include "winFuncs.h" |
---|
11 | #endif |
---|
12 | |
---|
13 | complex cassign(real, imag) |
---|
14 | double real, imag; |
---|
15 | { |
---|
16 | complex x; |
---|
17 | x.re = real; |
---|
18 | x.im = imag; |
---|
19 | return x; |
---|
20 | } |
---|
21 | |
---|
22 | |
---|
23 | complex cadd(x,y) |
---|
24 | complex x,y; |
---|
25 | { |
---|
26 | complex z; |
---|
27 | z.re = x.re + y.re; |
---|
28 | z.im = x.im + y.im; |
---|
29 | return z; |
---|
30 | } |
---|
31 | |
---|
32 | complex rcmult(x,y) |
---|
33 | double x; |
---|
34 | complex y; |
---|
35 | { |
---|
36 | complex z; |
---|
37 | z.re = x*y.re; |
---|
38 | z.im = x*y.im; |
---|
39 | return z; |
---|
40 | } |
---|
41 | |
---|
42 | complex csub(x,y) |
---|
43 | complex x,y; |
---|
44 | { |
---|
45 | complex z; |
---|
46 | z.re = x.re - y.re; |
---|
47 | z.im = x.im - y.im; |
---|
48 | return z; |
---|
49 | } |
---|
50 | |
---|
51 | |
---|
52 | complex cmult(x,y) |
---|
53 | complex x,y; |
---|
54 | { |
---|
55 | complex z; |
---|
56 | z.re = x.re*y.re - x.im*y.im; |
---|
57 | z.im = x.re*y.im + x.im*y.re; |
---|
58 | return z; |
---|
59 | } |
---|
60 | |
---|
61 | complex cdiv(x,y) |
---|
62 | complex x,y; |
---|
63 | { |
---|
64 | complex z; |
---|
65 | z.re = (x.re*y.re + x.im*y.im)/(y.re*y.re + y.im*y.im); |
---|
66 | z.im = (x.im*y.re - x.re*y.im)/(y.re*y.re + y.im*y.im); |
---|
67 | return z; |
---|
68 | } |
---|
69 | |
---|
70 | complex cexp(b) |
---|
71 | complex b; |
---|
72 | { |
---|
73 | complex z; |
---|
74 | double br,bi; |
---|
75 | br=b.re; |
---|
76 | bi=b.im; |
---|
77 | z.re = exp(br)*cos(bi); |
---|
78 | z.im = exp(br)*sin(bi); |
---|
79 | return z; |
---|
80 | } |
---|
81 | |
---|
82 | |
---|
83 | complex csqrt(z) //see Schaum`s Math Handbook p. 22, 6.6 and 6.10 |
---|
84 | complex z; |
---|
85 | { |
---|
86 | complex c; |
---|
87 | double zr,zi,x,y,r,w; |
---|
88 | |
---|
89 | zr=z.re; |
---|
90 | zi=z.im; |
---|
91 | |
---|
92 | if (zr==0.0 && zi==0.0) |
---|
93 | { |
---|
94 | c.re=0.0; |
---|
95 | c.im=0.0; |
---|
96 | return c; |
---|
97 | } |
---|
98 | else |
---|
99 | { |
---|
100 | x=fabs(zr); |
---|
101 | y=fabs(zi); |
---|
102 | if (x>y) |
---|
103 | { |
---|
104 | r=y/x; |
---|
105 | w=sqrt(x)*sqrt(0.5*(1.0+sqrt(1.0+r*r))); |
---|
106 | } |
---|
107 | else |
---|
108 | { |
---|
109 | r=x/y; |
---|
110 | w=sqrt(y)*sqrt(0.5*(r+sqrt(1.0+r*r))); |
---|
111 | } |
---|
112 | if (zr >=0.0) |
---|
113 | { |
---|
114 | c.re=w; |
---|
115 | c.im=zi/(2.0*w); |
---|
116 | } |
---|
117 | else |
---|
118 | { |
---|
119 | c.im=(zi >= 0) ? w : -w; |
---|
120 | c.re=zi/(2.0*c.im); |
---|
121 | } |
---|
122 | return c; |
---|
123 | } |
---|
124 | } |
---|
125 | |
---|
126 | complex ccos(b) |
---|
127 | complex b; |
---|
128 | { |
---|
129 | complex zero,two,z,i,bi,negbi; |
---|
130 | zero = cassign(0.0,0.0); |
---|
131 | two = cassign(2.0,0.0); |
---|
132 | i = cassign(0.0,1.0); |
---|
133 | bi = cmult(b,i); |
---|
134 | negbi = csub(zero,bi); |
---|
135 | z = cdiv(cadd(cexp(bi),cexp(negbi)),two); |
---|
136 | return z; |
---|
137 | } |
---|
138 | |
---|
139 | // normalized and modified erf |
---|
140 | // | |
---|
141 | // 1 + __ - - - - |
---|
142 | // | _ |
---|
143 | // | _ |
---|
144 | // | __ |
---|
145 | // 0 + - - - |
---|
146 | // |-------------+------------+-- |
---|
147 | // 0 center n_sub ---> |
---|
148 | // ind |
---|
149 | // |
---|
150 | // n_sub = total no. of bins(or sublayers) |
---|
151 | // ind = x position: 0 to max |
---|
152 | // nu = max x to integration |
---|
153 | double err_mod_func(n_sub, ind, nu) |
---|
154 | double n_sub,nu, ind; |
---|
155 | { |
---|
156 | double center, func; |
---|
157 | if (nu == 0.0) |
---|
158 | nu = 1e-14; |
---|
159 | if (n_sub == 0.0) |
---|
160 | n_sub = 1.0; |
---|
161 | |
---|
162 | |
---|
163 | //ind = (n_sub-1.0)/2.0-1.0 +ind; |
---|
164 | center = n_sub/2.0; |
---|
165 | // transform it so that min(ind) = 0 |
---|
166 | ind -= center; |
---|
167 | // normalize by max limit |
---|
168 | ind /= center; |
---|
169 | // divide by sqrt(2) to get Gaussian func |
---|
170 | nu /= sqrt(2.0); |
---|
171 | ind *= nu; |
---|
172 | // re-scale and normalize it so that max(erf)=1, min(erf)=0 |
---|
173 | func = erf(ind)/erf(nu)/2.0; |
---|
174 | // shift it by +0.5 in y-direction so that min(erf) = 0 |
---|
175 | func += 0.5; |
---|
176 | |
---|
177 | return func; |
---|
178 | } |
---|
179 | double linearfunc(n_sub, ind, nu) |
---|
180 | double n_sub,nu, ind; |
---|
181 | { |
---|
182 | double bin_size, func; |
---|
183 | if (n_sub == 0.0) |
---|
184 | n_sub = 1.0; |
---|
185 | |
---|
186 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
187 | // rescale |
---|
188 | ind *= bin_size; |
---|
189 | func = ind; |
---|
190 | |
---|
191 | return func; |
---|
192 | } |
---|
193 | // use the right hand side from the center of power func |
---|
194 | double power_r(n_sub, ind, nu) |
---|
195 | double n_sub, nu, ind; |
---|
196 | { |
---|
197 | double bin_size,func; |
---|
198 | if (nu == 0.0) |
---|
199 | nu = 1e-14; |
---|
200 | if (n_sub == 0.0) |
---|
201 | n_sub = 1.0; |
---|
202 | |
---|
203 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
204 | // rescale |
---|
205 | ind *= bin_size; |
---|
206 | func = pow(ind, nu); |
---|
207 | |
---|
208 | return func; |
---|
209 | } |
---|
210 | // use the left hand side from the center of power func |
---|
211 | double power_l(n_sub, ind, nu) |
---|
212 | double n_sub, nu, ind; |
---|
213 | { |
---|
214 | double bin_size, func; |
---|
215 | if (nu == 0.0) |
---|
216 | nu = 1e-14; |
---|
217 | if (n_sub == 0.0) |
---|
218 | n_sub = 1.0; |
---|
219 | |
---|
220 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
221 | // rescale |
---|
222 | ind *= bin_size; |
---|
223 | func = 1.0-pow((1.0-ind),nu); |
---|
224 | |
---|
225 | return func; |
---|
226 | } |
---|
227 | // use 1-exp func from x=0 to x=1 |
---|
228 | double exp_r(n_sub, ind, nu) |
---|
229 | double n_sub, nu, ind; |
---|
230 | { |
---|
231 | double bin_size, func; |
---|
232 | if (nu == 0.0) |
---|
233 | nu = 1e-14; |
---|
234 | if (n_sub == 0.0) |
---|
235 | n_sub = 1.0; |
---|
236 | |
---|
237 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
238 | // rescale |
---|
239 | ind *= bin_size; |
---|
240 | // modify func so that func(0) =0 and func(max)=1 |
---|
241 | func = 1.0-exp(-nu*ind); |
---|
242 | // normalize by its max |
---|
243 | func /= (1.0-exp(-nu)); |
---|
244 | |
---|
245 | return func; |
---|
246 | } |
---|
247 | |
---|
248 | // use the left hand side mirror image of exp func |
---|
249 | double exp_l(n_sub, ind, nu) |
---|
250 | double n_sub, nu, ind; |
---|
251 | { |
---|
252 | double bin_size, func; |
---|
253 | if (nu == 0.0) |
---|
254 | nu = 1e-14; |
---|
255 | if (n_sub == 0.0) |
---|
256 | n_sub = 1.0; |
---|
257 | |
---|
258 | bin_size = 1.0/n_sub; //size of each sub-layer |
---|
259 | // rescale |
---|
260 | ind *= bin_size; |
---|
261 | // modify func |
---|
262 | func = exp(-nu*(1.0-ind))-exp(-nu); |
---|
263 | // normalize by its max |
---|
264 | func /= (1.0-exp(-nu)); |
---|
265 | |
---|
266 | return func; |
---|
267 | } |
---|
268 | |
---|
269 | // To select function called |
---|
270 | // At nu = 0 (singular point), call line function |
---|
271 | double intersldfunc(fun_type, n_sub, i, nu, sld_l, sld_r) |
---|
272 | double n_sub, nu, sld_l, sld_r,i; |
---|
273 | int fun_type; |
---|
274 | { |
---|
275 | double sld_i, func; |
---|
276 | // this condition protects an error from the singular point |
---|
277 | if (nu == 0.0){ |
---|
278 | nu = 1e-13; |
---|
279 | } |
---|
280 | // select func |
---|
281 | switch(fun_type){ |
---|
282 | case 1 : |
---|
283 | func = power_r(n_sub, i, nu); |
---|
284 | break; |
---|
285 | case 2 : |
---|
286 | func = power_l(n_sub, i, nu); |
---|
287 | break; |
---|
288 | case 3 : |
---|
289 | func = exp_r(n_sub, i, nu); |
---|
290 | break; |
---|
291 | case 4 : |
---|
292 | func = exp_l(n_sub, i, nu); |
---|
293 | break; |
---|
294 | case 5 : |
---|
295 | func = linearfunc(n_sub, i, nu); |
---|
296 | break; |
---|
297 | default: |
---|
298 | func = err_mod_func(n_sub, i, nu); |
---|
299 | break; |
---|
300 | } |
---|
301 | // compute sld |
---|
302 | if (sld_r>sld_l){ |
---|
303 | sld_i = (sld_r-sld_l)*func+sld_l; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
304 | } |
---|
305 | else if (sld_r<sld_l){ |
---|
306 | func = 1.0-func; |
---|
307 | sld_i = (sld_l-sld_r)*func+sld_r; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
308 | } |
---|
309 | else{ |
---|
310 | sld_i = sld_r; |
---|
311 | } |
---|
312 | return sld_i; |
---|
313 | } |
---|
314 | |
---|
315 | |
---|
316 | // used by refl.c |
---|
317 | double interfunc(fun_type, n_sub, i, sld_l, sld_r) |
---|
318 | double n_sub, sld_l, sld_r, i; |
---|
319 | int fun_type; |
---|
320 | { |
---|
321 | double sld_i, func; |
---|
322 | switch(fun_type){ |
---|
323 | case 0 : |
---|
324 | func = err_mod_func(n_sub, i, 2.5); |
---|
325 | break; |
---|
326 | default: |
---|
327 | func = linearfunc(n_sub, i, 1.0); |
---|
328 | break; |
---|
329 | } |
---|
330 | if (sld_r>sld_l){ |
---|
331 | sld_i = (sld_r-sld_l)*func+sld_l; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
332 | } |
---|
333 | else if (sld_r<sld_l){ |
---|
334 | func = 1.0-func; |
---|
335 | sld_i = (sld_l-sld_r)*func+sld_r; //sld_cal(sld[i],sld[i+1],n_sub,dz,thick); |
---|
336 | } |
---|
337 | else{ |
---|
338 | sld_i = sld_r; |
---|
339 | } |
---|
340 | return sld_i; |
---|
341 | } |
---|