[ae3ce4e] | 1 | /** |
---|
| 2 | * Scattering model for a cylinder with elliptical cross-section |
---|
| 3 | */ |
---|
| 4 | |
---|
| 5 | #include "elliptical_cylinder.h" |
---|
| 6 | #include <math.h> |
---|
| 7 | #include "libCylinder.h" |
---|
| 8 | #include <stdio.h> |
---|
| 9 | #include <stdlib.h> |
---|
| 10 | |
---|
| 11 | |
---|
| 12 | /** |
---|
| 13 | * Function to evaluate 1D scattering function |
---|
| 14 | * @param pars: parameters of the cylinder |
---|
| 15 | * @param q: q-value |
---|
| 16 | * @return: function value |
---|
| 17 | */ |
---|
| 18 | double elliptical_cylinder_analytical_1D(EllipticalCylinderParameters *pars, double q) { |
---|
[f10063e] | 19 | double dp[7]; |
---|
[3fe701a] | 20 | |
---|
[ae3ce4e] | 21 | // Fill paramater array |
---|
| 22 | dp[0] = pars->scale; |
---|
| 23 | dp[1] = pars->r_minor; |
---|
| 24 | dp[2] = pars->r_ratio; |
---|
| 25 | dp[3] = pars->length; |
---|
[f10063e] | 26 | dp[4] = pars->sldCyl; |
---|
| 27 | dp[5] = pars->sldSolv; |
---|
| 28 | dp[6] = pars->background; |
---|
[3fe701a] | 29 | |
---|
[ae3ce4e] | 30 | // Call library function to evaluate model |
---|
[3fe701a] | 31 | return EllipCyl20(dp, q); |
---|
[ae3ce4e] | 32 | } |
---|
| 33 | |
---|
[975ec8e] | 34 | double elliptical_cylinder_kernel(EllipticalCylinderParameters *pars, double q, double alpha, double nu) { |
---|
[ae3ce4e] | 35 | double qr; |
---|
| 36 | double qL; |
---|
[975ec8e] | 37 | double Be,Si; |
---|
[ae3ce4e] | 38 | double r_major; |
---|
| 39 | double kernel; |
---|
[3fe701a] | 40 | |
---|
[ae3ce4e] | 41 | r_major = pars->r_ratio * pars->r_minor; |
---|
| 42 | |
---|
[3fe701a] | 43 | qr = q*sin(alpha)*sqrt( r_major*r_major*sin(nu)*sin(nu) + pars->r_minor*pars->r_minor*cos(nu)*cos(nu) ); |
---|
[ae3ce4e] | 44 | qL = q*pars->length*cos(alpha)/2.0; |
---|
[3fe701a] | 45 | |
---|
[975ec8e] | 46 | if (qr==0){ |
---|
| 47 | Be = 0.5; |
---|
| 48 | }else{ |
---|
| 49 | Be = NR_BessJ1(qr)/qr; |
---|
| 50 | } |
---|
| 51 | if (qL==0){ |
---|
| 52 | Si = 1.0; |
---|
| 53 | }else{ |
---|
| 54 | Si = sin(qL)/qL; |
---|
| 55 | } |
---|
| 56 | |
---|
| 57 | |
---|
| 58 | kernel = 2.0*Be * Si; |
---|
[ae3ce4e] | 59 | return kernel*kernel; |
---|
| 60 | } |
---|
| 61 | |
---|
| 62 | /** |
---|
| 63 | * Function to evaluate 2D scattering function |
---|
| 64 | * @param pars: parameters of the cylinder |
---|
| 65 | * @param q: q-value |
---|
| 66 | * @return: function value |
---|
| 67 | */ |
---|
| 68 | double elliptical_cylinder_analytical_2DXY(EllipticalCylinderParameters *pars, double qx, double qy) { |
---|
| 69 | double q; |
---|
| 70 | q = sqrt(qx*qx+qy*qy); |
---|
| 71 | return elliptical_cylinder_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
[3fe701a] | 72 | } |
---|
[ae3ce4e] | 73 | |
---|
| 74 | /** |
---|
| 75 | * Function to evaluate 2D scattering function |
---|
| 76 | * @param pars: parameters of the cylinder |
---|
| 77 | * @param q: q-value |
---|
[3fe701a] | 78 | * @param theta: angle theta = angle wrt z axis |
---|
| 79 | * @param phi: angle phi = angle around y axis (starting from the x+-direction as phi = 0) |
---|
[ae3ce4e] | 80 | * @return: function value |
---|
| 81 | */ |
---|
| 82 | double elliptical_cylinder_analytical_2D(EllipticalCylinderParameters *pars, double q, double phi) { |
---|
| 83 | return elliptical_cylinder_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
[3fe701a] | 84 | } |
---|
[ae3ce4e] | 85 | |
---|
| 86 | /** |
---|
| 87 | * Function to evaluate 2D scattering function |
---|
| 88 | * @param pars: parameters of the cylinder |
---|
| 89 | * @param q: q-value |
---|
| 90 | * @param q_x: q_x / q |
---|
| 91 | * @param q_y: q_y / q |
---|
| 92 | * @return: function value |
---|
| 93 | */ |
---|
| 94 | double elliptical_cylinder_analytical_2D_scaled(EllipticalCylinderParameters *pars, double q, double q_x, double q_y) { |
---|
| 95 | double cyl_x, cyl_y, cyl_z; |
---|
[3fe701a] | 96 | double ell_x, ell_y; |
---|
[ae3ce4e] | 97 | double q_z; |
---|
| 98 | double alpha, vol, cos_val; |
---|
[3fe701a] | 99 | double nu, cos_nu; |
---|
[ae3ce4e] | 100 | double answer; |
---|
[3fe701a] | 101 | |
---|
| 102 | //Cylinder orientation |
---|
[ae3ce4e] | 103 | cyl_x = sin(pars->cyl_theta) * cos(pars->cyl_phi); |
---|
| 104 | cyl_y = sin(pars->cyl_theta) * sin(pars->cyl_phi); |
---|
| 105 | cyl_z = cos(pars->cyl_theta); |
---|
[3fe701a] | 106 | |
---|
[ae3ce4e] | 107 | // q vector |
---|
| 108 | q_z = 0; |
---|
[3fe701a] | 109 | |
---|
[ae3ce4e] | 110 | // Compute the angle btw vector q and the |
---|
| 111 | // axis of the cylinder |
---|
| 112 | cos_val = cyl_x*q_x + cyl_y*q_y + cyl_z*q_z; |
---|
[3fe701a] | 113 | |
---|
[ae3ce4e] | 114 | // The following test should always pass |
---|
| 115 | if (fabs(cos_val)>1.0) { |
---|
| 116 | printf("cyl_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
| 117 | return 0; |
---|
| 118 | } |
---|
[3fe701a] | 119 | |
---|
[ae3ce4e] | 120 | // Note: cos(alpha) = 0 and 1 will get an |
---|
| 121 | // undefined value from CylKernel |
---|
| 122 | alpha = acos( cos_val ); |
---|
[3fe701a] | 123 | |
---|
| 124 | //ellipse orientation: |
---|
| 125 | // the elliptical corss section was transformed and projected |
---|
| 126 | // into the detector plane already through sin(alpha)and furthermore psi remains as same |
---|
| 127 | // on the detector plane. |
---|
| 128 | // So, all we need is to calculate the angle (nu) of the minor axis of the ellipse wrt |
---|
| 129 | // the wave vector q. |
---|
| 130 | |
---|
| 131 | //x- y- component on the detector plane. |
---|
| 132 | ell_x = cos(pars->cyl_psi); |
---|
| 133 | ell_y = sin(pars->cyl_psi); |
---|
| 134 | |
---|
| 135 | // calculate the axis of the ellipse wrt q-coord. |
---|
| 136 | cos_nu = ell_x*q_x + ell_y*q_y; |
---|
| 137 | nu = acos(cos_nu); |
---|
| 138 | |
---|
| 139 | // The following test should always pass |
---|
| 140 | if (fabs(cos_nu)>1.0) { |
---|
| 141 | printf("cyl_ana_2D: Unexpected error: cos(nu)>1\n"); |
---|
| 142 | return 0; |
---|
| 143 | } |
---|
| 144 | |
---|
[975ec8e] | 145 | answer = elliptical_cylinder_kernel(pars, q, alpha,nu); |
---|
[3fe701a] | 146 | |
---|
[ae3ce4e] | 147 | // Multiply by contrast^2 |
---|
[f10063e] | 148 | answer *= (pars->sldCyl - pars->sldSolv) * (pars->sldCyl - pars->sldSolv); |
---|
[3fe701a] | 149 | |
---|
[ae3ce4e] | 150 | //normalize by cylinder volume |
---|
| 151 | //NOTE that for this (Fournet) definition of the integral, one must MULTIPLY by Vcyl |
---|
| 152 | vol = acos(-1.0) * pars->r_minor * pars->r_minor * pars->r_ratio * pars->length; |
---|
| 153 | answer *= vol; |
---|
[3fe701a] | 154 | |
---|
[ae3ce4e] | 155 | //convert to [cm-1] |
---|
| 156 | answer *= 1.0e8; |
---|
[3fe701a] | 157 | |
---|
[ae3ce4e] | 158 | //Scale |
---|
| 159 | answer *= pars->scale; |
---|
[3fe701a] | 160 | |
---|
[ae3ce4e] | 161 | // add in the background |
---|
| 162 | answer += pars->background; |
---|
[3fe701a] | 163 | |
---|
[ae3ce4e] | 164 | return answer; |
---|
| 165 | } |
---|
[3fe701a] | 166 | |
---|