1 | /** |
---|
2 | * Scattering model for a csparallelepiped |
---|
3 | */ |
---|
4 | |
---|
5 | #include "csparallelepiped.h" |
---|
6 | #include <math.h> |
---|
7 | #include "libCylinder.h" |
---|
8 | #include <stdio.h> |
---|
9 | #include <stdlib.h> |
---|
10 | |
---|
11 | |
---|
12 | /** |
---|
13 | * Function to evaluate 1D scattering function |
---|
14 | * @param pars: parameters of the CSparallelepiped |
---|
15 | * @param q: q-value |
---|
16 | * @return: function value |
---|
17 | */ |
---|
18 | double csparallelepiped_analytical_1D(CSParallelepipedParameters *pars, double q) { |
---|
19 | double dp[13]; |
---|
20 | |
---|
21 | // Fill paramater array |
---|
22 | dp[0] = pars->scale; |
---|
23 | dp[1] = pars->shortA; |
---|
24 | dp[2] = pars->midB; |
---|
25 | dp[3] = pars->longC; |
---|
26 | dp[4] = pars->rimA; |
---|
27 | dp[5] = pars->rimB; |
---|
28 | dp[6] = pars->rimC; |
---|
29 | dp[7] = pars->sld_rimA; |
---|
30 | dp[8] = pars->sld_rimB; |
---|
31 | dp[9] = pars->sld_rimC; |
---|
32 | dp[10] = pars->sld_pcore; |
---|
33 | dp[11] = pars->sld_solv; |
---|
34 | dp[12] = pars->background; |
---|
35 | |
---|
36 | // Call library function to evaluate model |
---|
37 | //ToDo: Correct this 1d model, CSParallelepiped in libigor (2D corrected). |
---|
38 | return CSParallelepiped(dp, q); |
---|
39 | } |
---|
40 | |
---|
41 | |
---|
42 | double cspkernel(double dp[],double q, double ala, double alb, double alc){ |
---|
43 | // mu passed in is really mu*sqrt(1-sig^2) |
---|
44 | double argA,argB,argC,argtA,argtB,argtC,tmp1,tmp2,tmp3,tmpt1,tmpt2,tmpt3; //local variables |
---|
45 | |
---|
46 | double aa,bb,cc, ta,tb,tc; |
---|
47 | double Vin,Vot,V1,V2,V3; |
---|
48 | double rhoA,rhoB,rhoC, rhoP, rhosolv; |
---|
49 | double dr0, drA,drB, drC; |
---|
50 | double retVal; |
---|
51 | |
---|
52 | aa = dp[1]; |
---|
53 | bb = dp[2]; |
---|
54 | cc = dp[3]; |
---|
55 | ta = dp[4]; |
---|
56 | tb = dp[5]; |
---|
57 | tc = dp[6]; |
---|
58 | rhoA=dp[7]; |
---|
59 | rhoB=dp[8]; |
---|
60 | rhoC=dp[9]; |
---|
61 | rhoP=dp[10]; |
---|
62 | rhosolv=dp[11]; |
---|
63 | dr0=rhoP-rhosolv; |
---|
64 | drA=rhoA-rhosolv; |
---|
65 | drB=rhoB-rhosolv; |
---|
66 | drC=rhoC-rhosolv; |
---|
67 | Vin=(aa*bb*cc); |
---|
68 | Vot=(aa*bb*cc+2.0*ta*bb*cc+2.0*aa*tb*cc+2.0*aa*bb*tc); |
---|
69 | V1=(2.0*ta*bb*cc); // incorrect V1 (aa*bb*cc+2*ta*bb*cc) |
---|
70 | V2=(2.0*aa*tb*cc); // incorrect V2(aa*bb*cc+2*aa*tb*cc) |
---|
71 | V3=(2.0*aa*bb*tc); |
---|
72 | //aa = aa/bb; |
---|
73 | ta=(aa+2.0*ta);///bb; |
---|
74 | tb=(aa+2.0*tb);///bb; |
---|
75 | tc=(aa+2.0*tc); |
---|
76 | //handle arg=0 separately, as sin(t)/t -> 1 as t->0 |
---|
77 | argA = q*aa*ala/2.0; |
---|
78 | argB = q*bb*alb/2.0; |
---|
79 | argC = q*cc*alc/2.0; |
---|
80 | argtA = q*ta*ala/2.0; |
---|
81 | argtB = q*tb*alb/2.0; |
---|
82 | argtC = q*tc*alc/2.0; |
---|
83 | |
---|
84 | if(argA==0.0) { |
---|
85 | tmp1 = 1.0; |
---|
86 | } else { |
---|
87 | tmp1 = sin(argA)/argA; |
---|
88 | } |
---|
89 | if (argB==0.0) { |
---|
90 | tmp2 = 1.0; |
---|
91 | } else { |
---|
92 | tmp2 = sin(argB)/argB; |
---|
93 | } |
---|
94 | |
---|
95 | if (argC==0.0) { |
---|
96 | tmp3 = 1.0; |
---|
97 | } else { |
---|
98 | tmp3 = sin(argC)/argC; |
---|
99 | } |
---|
100 | if(argtA==0.0) { |
---|
101 | tmpt1 = 1.0; |
---|
102 | } else { |
---|
103 | tmpt1 = sin(argtA)/argtA; |
---|
104 | } |
---|
105 | if (argtB==0.0) { |
---|
106 | tmpt2 = 1.0; |
---|
107 | } else { |
---|
108 | tmpt2 = sin(argtB)/argtB; |
---|
109 | } |
---|
110 | if (argtC==0.0) { |
---|
111 | tmpt3 = 1.0; |
---|
112 | } else { |
---|
113 | tmpt3 = sin(argtC)*sin(argtC)/argtC/argtC; |
---|
114 | } |
---|
115 | // This expression is different from NIST/IGOR package (I strongly believe the IGOR is wrong!!!). 10/15/2010. |
---|
116 | retVal =( dr0*tmp1*tmp2*tmp3*Vin + drA*(tmpt1-tmp1)*tmp2*tmp3*V1+ drB*tmp1*(tmpt2-tmp2)*tmp3*V2 + drC*tmp1*tmp2*(tmpt3-tmp3)*V3)* |
---|
117 | ( dr0*tmp1*tmp2*tmp3*Vin + drA*(tmpt1-tmp1)*tmp2*tmp3*V1+ drB*tmp1*(tmpt2-tmp2)*tmp3*V2 + drC*tmp1*tmp2*(tmpt3-tmp3)*V3); // correct FF : square of sum of phase factors |
---|
118 | //retVal *= (tmp3*tmp3); |
---|
119 | retVal /= Vot; |
---|
120 | |
---|
121 | return (retVal); |
---|
122 | |
---|
123 | }//Function cspkernel() |
---|
124 | |
---|
125 | |
---|
126 | |
---|
127 | |
---|
128 | /** |
---|
129 | * Function to evaluate 2D scattering function |
---|
130 | * @param pars: parameters of the CSparallelepiped |
---|
131 | * @param q: q-value |
---|
132 | * @return: function value |
---|
133 | */ |
---|
134 | double csparallelepiped_analytical_2DXY(CSParallelepipedParameters *pars, double qx, double qy) { |
---|
135 | double q; |
---|
136 | q = sqrt(qx*qx+qy*qy); |
---|
137 | return csparallelepiped_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
138 | } |
---|
139 | |
---|
140 | |
---|
141 | /** |
---|
142 | * Function to evaluate 2D scattering function |
---|
143 | * @param pars: parameters of the CSParallelepiped |
---|
144 | * @param q: q-value |
---|
145 | * @param phi: angle phi |
---|
146 | * @return: function value |
---|
147 | */ |
---|
148 | double csparallelepiped_analytical_2D(CSParallelepipedParameters *pars, double q, double phi) { |
---|
149 | return csparallelepiped_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
150 | } |
---|
151 | |
---|
152 | /** |
---|
153 | * Function to evaluate 2D scattering function |
---|
154 | * @param pars: parameters of the CSparallelepiped |
---|
155 | * @param q: q-value |
---|
156 | * @param q_x: q_x / q |
---|
157 | * @param q_y: q_y / q |
---|
158 | * @return: function value |
---|
159 | */ |
---|
160 | double csparallelepiped_analytical_2D_scaled(CSParallelepipedParameters *pars, double q, double q_x, double q_y) { |
---|
161 | double dp[13]; |
---|
162 | double cparallel_x, cparallel_y, cparallel_z, bparallel_x, bparallel_y, parallel_x, parallel_y, parallel_z; |
---|
163 | double q_z; |
---|
164 | double alpha, vol, cos_val_c, cos_val_b, cos_val_a, edgeA, edgeB, edgeC; |
---|
165 | |
---|
166 | double answer; |
---|
167 | //convert angle degree to radian |
---|
168 | double pi = 4.0*atan(1.0); |
---|
169 | double theta = pars->parallel_theta * pi/180.0; |
---|
170 | double phi = pars->parallel_phi * pi/180.0; |
---|
171 | double psi = pars->parallel_psi* pi/180.0; |
---|
172 | |
---|
173 | // Fill paramater array |
---|
174 | dp[0] = 1.0; |
---|
175 | dp[1] = pars->shortA; |
---|
176 | dp[2] = pars->midB; |
---|
177 | dp[3] = pars->longC; |
---|
178 | dp[4] = pars->rimA; |
---|
179 | dp[5] = pars->rimB; |
---|
180 | dp[6] = pars->rimC; |
---|
181 | dp[7] = pars->sld_rimA; |
---|
182 | dp[8] = pars->sld_rimB; |
---|
183 | dp[9] = pars->sld_rimC; |
---|
184 | dp[10] = pars->sld_pcore; |
---|
185 | dp[11] = pars->sld_solv; |
---|
186 | dp[12] = 0.0; |
---|
187 | |
---|
188 | |
---|
189 | edgeA = pars->shortA; |
---|
190 | edgeB = pars->midB; |
---|
191 | edgeC = pars->longC; |
---|
192 | |
---|
193 | |
---|
194 | // parallelepiped c axis orientation |
---|
195 | cparallel_x = sin(theta) * cos(phi); |
---|
196 | cparallel_y = sin(theta) * sin(phi); |
---|
197 | cparallel_z = cos(theta); |
---|
198 | |
---|
199 | // q vector |
---|
200 | q_z = 0.0; |
---|
201 | |
---|
202 | // Compute the angle btw vector q and the |
---|
203 | // axis of the parallelepiped |
---|
204 | cos_val_c = cparallel_x*q_x + cparallel_y*q_y + cparallel_z*q_z; |
---|
205 | alpha = acos(cos_val_c); |
---|
206 | |
---|
207 | // parallelepiped a axis orientation |
---|
208 | parallel_x = sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)*sin(pars->parallel_psi); |
---|
209 | parallel_y = cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)*cos(pars->parallel_psi); |
---|
210 | |
---|
211 | cos_val_a = parallel_x*q_x + parallel_y*q_y; |
---|
212 | |
---|
213 | |
---|
214 | |
---|
215 | // parallelepiped b axis orientation |
---|
216 | bparallel_x = sqrt(1.0-sin(theta)*cos(phi))*cos(psi);//cos(pars->parallel_theta) * cos(pars->parallel_phi)* cos(pars->parallel_psi); |
---|
217 | bparallel_y = sqrt(1.0-sin(theta)*cos(phi))*sin(psi);//cos(pars->parallel_theta) * sin(pars->parallel_phi)* sin(pars->parallel_psi); |
---|
218 | // axis of the parallelepiped |
---|
219 | cos_val_b = sin(acos(cos_val_a)) ; |
---|
220 | |
---|
221 | |
---|
222 | |
---|
223 | // The following test should always pass |
---|
224 | if (fabs(cos_val_c)>1.0) { |
---|
225 | printf("parallel_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
226 | return 0; |
---|
227 | } |
---|
228 | |
---|
229 | // Call the IGOR library function to get the kernel |
---|
230 | answer = cspkernel( dp,q, sin(alpha)*cos_val_a,sin(alpha)*cos_val_b,cos_val_c); |
---|
231 | |
---|
232 | //convert to [cm-1] |
---|
233 | answer *= 1.0e8; |
---|
234 | |
---|
235 | //Scale |
---|
236 | answer *= pars->scale; |
---|
237 | |
---|
238 | // add in the background |
---|
239 | answer += pars->background; |
---|
240 | |
---|
241 | return answer; |
---|
242 | } |
---|
243 | |
---|