[d5b6a9d] | 1 | /* |
---|
| 2 | * Scattering model for a BC_ParaCrystal |
---|
| 3 | */ |
---|
| 4 | #include "bcc.h" |
---|
| 5 | #include "libSphere.h" |
---|
[e161fac] | 6 | #include <math.h> |
---|
| 7 | #include <stdio.h> |
---|
[d5b6a9d] | 8 | |
---|
| 9 | |
---|
| 10 | /** |
---|
| 11 | * Function to evaluate 1D scattering function |
---|
| 12 | * @param pars: parameters of the BCC_ParaCrystal |
---|
| 13 | * @param q: q-value |
---|
| 14 | * @return: function value |
---|
| 15 | */ |
---|
| 16 | double bcc_analytical_1D(BCParameters *pars, double q) { |
---|
| 17 | double dp[7]; |
---|
| 18 | double result; |
---|
| 19 | |
---|
| 20 | dp[0] = pars->scale; |
---|
| 21 | dp[1] = pars->dnn; |
---|
| 22 | dp[2] = pars->d_factor; |
---|
| 23 | dp[3] = pars->radius; |
---|
| 24 | dp[4] = pars->sldSph; |
---|
| 25 | dp[5] = pars->sldSolv; |
---|
| 26 | dp[6] = pars->background; |
---|
| 27 | |
---|
| 28 | result = BCC_ParaCrystal(dp, q); |
---|
| 29 | // This FIXES a singualrity the kernel in libigor. |
---|
| 30 | if ( result == INFINITY || result == NAN){ |
---|
| 31 | result = pars->background; |
---|
| 32 | } |
---|
| 33 | return result; |
---|
| 34 | } |
---|
| 35 | |
---|
| 36 | /** |
---|
| 37 | * Function to evaluate 2D scattering function |
---|
| 38 | * @param pars: parameters of the BCC_ParaCrystal |
---|
| 39 | * @param q: q-value |
---|
| 40 | * @return: function value |
---|
| 41 | */ |
---|
| 42 | double bc_analytical_2DXY(BCParameters *pars, double qx, double qy){ |
---|
| 43 | double q; |
---|
| 44 | q = sqrt(qx*qx+qy*qy); |
---|
| 45 | return bc_analytical_2D_scaled(pars, q, qx/q, qy/q); |
---|
| 46 | } |
---|
| 47 | |
---|
| 48 | double bc_analytical_2D(BCParameters *pars, double q, double phi) { |
---|
| 49 | return bc_analytical_2D_scaled(pars, q, cos(phi), sin(phi)); |
---|
| 50 | } |
---|
| 51 | |
---|
| 52 | /** |
---|
| 53 | * Function to evaluate 2D scattering function |
---|
| 54 | * @param pars: parameters of the BCCCrystalModel |
---|
| 55 | * @param q: q-value |
---|
| 56 | * @param q_x: q_x / q |
---|
| 57 | * @param q_y: q_y / q |
---|
| 58 | * @return: function value |
---|
| 59 | */ |
---|
| 60 | double bc_analytical_2D_scaled(BCParameters *pars, double q, double q_x, double q_y) { |
---|
| 61 | double a3_x, a3_y, a3_z, a2_x, a2_y, a1_x, a1_y; |
---|
| 62 | double b3_x, b3_y, b3_z, b2_x, b2_y, b1_x, b1_y; |
---|
| 63 | double q_z; |
---|
[85bb870] | 64 | double alpha, vol, cos_val_b3, cos_val_b2, cos_val_b1; |
---|
[d5b6a9d] | 65 | double a1_dot_q, a2_dot_q,a3_dot_q; |
---|
| 66 | double answer; |
---|
| 67 | double Pi = 4.0*atan(1.0); |
---|
| 68 | double aa, Da, qDa_2, latticeScale, Zq, Fkq, Fkq_2; |
---|
| 69 | |
---|
[e161fac] | 70 | //convert angle degree to radian |
---|
| 71 | double pi = 4.0*atan(1.0); |
---|
| 72 | double theta = pars->theta * pi/180.0; |
---|
| 73 | double phi = pars->phi * pi/180.0; |
---|
| 74 | double psi = pars->psi * pi/180.0; |
---|
| 75 | |
---|
| 76 | double dp[5]; |
---|
[d5b6a9d] | 77 | dp[0] = 1.0; |
---|
| 78 | dp[1] = pars->radius; |
---|
| 79 | dp[2] = pars->sldSph; |
---|
| 80 | dp[3] = pars->sldSolv; |
---|
| 81 | dp[4] = 0.0; |
---|
| 82 | |
---|
| 83 | aa = pars->dnn; |
---|
| 84 | Da = pars->d_factor*aa; |
---|
| 85 | qDa_2 = pow(q*Da,2.0); |
---|
| 86 | |
---|
| 87 | //the occupied volume of the lattice |
---|
| 88 | latticeScale = 2.0*(4.0/3.0)*Pi*(dp[1]*dp[1]*dp[1])/pow(aa/sqrt(3.0/4.0),3.0); |
---|
[85bb870] | 89 | // q vector |
---|
| 90 | q_z = 0.0; // for SANS; assuming qz is negligible |
---|
[d5b6a9d] | 91 | /// Angles here are respect to detector coordinate |
---|
| 92 | /// instead of against q coordinate(PRB 36(46), 3(6), 1754(3854)) |
---|
| 93 | // b3 axis orientation |
---|
[4628e31] | 94 | b3_x = sin(theta) * cos(phi);//negative sign here??? |
---|
| 95 | b3_y = sin(theta) * sin(phi); |
---|
| 96 | b3_z = cos(theta); |
---|
[85bb870] | 97 | cos_val_b3 = b3_x*q_x + b3_y*q_y + b3_z*q_z; |
---|
| 98 | |
---|
| 99 | alpha = acos(cos_val_b3); |
---|
[d5b6a9d] | 100 | // b1 axis orientation |
---|
[4628e31] | 101 | b1_x = sin(psi); |
---|
| 102 | b1_y = cos(psi); |
---|
[85bb870] | 103 | cos_val_b1 = (b1_x*q_x + b1_y*q_y); |
---|
[d5b6a9d] | 104 | // b2 axis orientation |
---|
[85bb870] | 105 | cos_val_b2 = sin(acos(cos_val_b1)); |
---|
| 106 | // alpha corrections |
---|
| 107 | cos_val_b2 *= sin(alpha); |
---|
| 108 | cos_val_b1 *= sin(alpha); |
---|
[d5b6a9d] | 109 | |
---|
| 110 | // Compute the angle btw vector q and the a3 axis |
---|
[85bb870] | 111 | a3_dot_q = 0.5*aa*q*(cos_val_b2+cos_val_b1-cos_val_b3); |
---|
[d5b6a9d] | 112 | |
---|
| 113 | // a1 axis |
---|
[85bb870] | 114 | a1_dot_q = 0.5*aa*q*(cos_val_b3+cos_val_b2-cos_val_b1); |
---|
[d5b6a9d] | 115 | |
---|
| 116 | // a2 axis |
---|
[85bb870] | 117 | a2_dot_q = 0.5*aa*q*(cos_val_b3+cos_val_b1-cos_val_b2); |
---|
[d5b6a9d] | 118 | |
---|
| 119 | // The following test should always pass |
---|
[85bb870] | 120 | if (fabs(cos_val_b3)>1.0) { |
---|
| 121 | printf("bcc_ana_2D: Unexpected error: cos(alpha)>1\n"); |
---|
[d5b6a9d] | 122 | return 0; |
---|
| 123 | } |
---|
| 124 | // Get Fkq and Fkq_2 |
---|
| 125 | Fkq = exp(-0.5*pow(Da/aa,2.0)*(a1_dot_q*a1_dot_q+a2_dot_q*a2_dot_q+a3_dot_q*a3_dot_q)); |
---|
| 126 | Fkq_2 = Fkq*Fkq; |
---|
| 127 | // Call Zq=Z1*Z2*Z3 |
---|
| 128 | Zq = (1.0-Fkq_2)/(1.0-2.0*Fkq*cos(a1_dot_q)+Fkq_2); |
---|
[85bb870] | 129 | Zq *= (1.0-Fkq_2)/(1.0-2.0*Fkq*cos(a2_dot_q)+Fkq_2); |
---|
| 130 | Zq *= (1.0-Fkq_2)/(1.0-2.0*Fkq*cos(a3_dot_q)+Fkq_2); |
---|
[d5b6a9d] | 131 | |
---|
| 132 | // Use SphereForm directly from libigor |
---|
| 133 | answer = SphereForm(dp,q)*Zq; |
---|
| 134 | |
---|
| 135 | //consider scales |
---|
| 136 | answer *= latticeScale * pars->scale; |
---|
| 137 | |
---|
| 138 | // This FIXES a singualrity the kernel in libigor. |
---|
| 139 | if ( answer == INFINITY || answer == NAN){ |
---|
| 140 | answer = 0.0; |
---|
| 141 | } |
---|
| 142 | |
---|
| 143 | // add background |
---|
| 144 | answer += pars->background; |
---|
| 145 | |
---|
| 146 | return answer; |
---|
| 147 | } |
---|