source: sasview/sansmodels/src/sans/models/VesicleModel.py @ 6ca38f3

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 6ca38f3 was 79ac6f8, checked in by Gervaise Alina <gervyh@…>, 15 years ago

working on documentation

  • Property mode set to 100644
File size: 4.9 KB
Line 
1#!/usr/bin/env python
2
3##############################################################################
4#       This software was developed by the University of Tennessee as part of the
5#       Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
6#       project funded by the US National Science Foundation.
7#
8#       If you use DANSE applications to do scientific research that leads to
9#       publication, we ask that you acknowledge the use of the software with the
10#       following sentence:
11#
12#       "This work benefited from DANSE software developed under NSF award DMR-0520547."
13#
14#       copyright 2008, University of Tennessee
15##############################################################################
16
17
18"""
19Provide functionality for a C extension model
20
21:WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
22         DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\vesicle.h
23         AND RE-RUN THE GENERATOR SCRIPT
24
25"""
26
27from sans.models.BaseComponent import BaseComponent
28from sans_extension.c_models import CVesicleModel
29import copy   
30   
31class VesicleModel(CVesicleModel, BaseComponent):
32    """
33    Class that evaluates a VesicleModel model.
34    This file was auto-generated from ..\c_extensions\vesicle.h.
35    Refer to that file and the structure it contains
36    for details of the model.
37    List of default parameters:
38         scale           = 1.0
39         radius          = 100.0 [A]
40         thickness       = 30.0 [A]
41         core_sld        = 6.36e-006 [1/A^(2)]
42         shell_sld       = 5e-007 [1/A^(2)]
43         background      = 0.0 [1/cm]
44
45    """
46       
47    def __init__(self):
48        """ Initialization """
49       
50        # Initialize BaseComponent first, then sphere
51        BaseComponent.__init__(self)
52        CVesicleModel.__init__(self)
53       
54        ## Name of the model
55        self.name = "VesicleModel"
56        ## Model description
57        self.description ="""Model parameters:    radius : the core radius of the vesicle
58                thickness: the shell thickness
59                core_sld: the core SLD
60                shell_sld: the shell SLD
61                background: incoherent background
62                scale : scale factor"""
63       
64        ## Parameter details [units, min, max]
65        self.details = {}
66        self.details['scale'] = ['', None, None]
67        self.details['radius'] = ['[A]', None, None]
68        self.details['thickness'] = ['[A]', None, None]
69        self.details['core_sld'] = ['[1/A^(2)]', None, None]
70        self.details['shell_sld'] = ['[1/A^(2)]', None, None]
71        self.details['background'] = ['[1/cm]', None, None]
72
73        ## fittable parameters
74        self.fixed=['radius.width', 'thickness.width']
75       
76        ## parameters with orientation
77        self.orientation_params =[]
78   
79    def clone(self):
80        """ Return a identical copy of self """
81        return self._clone(VesicleModel())   
82       
83    def __getstate__(self):
84        """
85        return object state for pickling and copying
86        """
87        model_state = {'params': self.params, 'dispersion': self.dispersion, 'log': self.log}
88       
89        return self.__dict__, model_state
90       
91    def __setstate__(self, state):
92        """
93        create object from pickled state
94       
95        :param state: the state of the current model
96       
97        """
98       
99        self.__dict__, model_state = state
100        self.params = model_state['params']
101        self.dispersion = model_state['dispersion']
102        self.log = model_state['log']
103       
104   
105    def run(self, x=0.0):
106        """
107        Evaluate the model
108       
109        :param x: input q, or [q,phi]
110       
111        :return: scattering function P(q)
112       
113        """
114       
115        return CVesicleModel.run(self, x)
116   
117    def runXY(self, x=0.0):
118        """
119        Evaluate the model in cartesian coordinates
120       
121        :param x: input q, or [qx, qy]
122       
123        :return: scattering function P(q)
124       
125        """
126       
127        return CVesicleModel.runXY(self, x)
128       
129    def evalDistribution(self, x=[]):
130        """
131        Evaluate the model in cartesian coordinates
132       
133        :param x: input q[], or [qx[], qy[]]
134       
135        :return: scattering function P(q[])
136       
137        """
138        return CVesicleModel.evalDistribution(self, x)
139       
140    def calculate_ER(self):
141        """
142        Calculate the effective radius for P(q)*S(q)
143       
144        :return: the value of the effective radius
145       
146        """       
147        return CVesicleModel.calculate_ER(self)
148       
149    def set_dispersion(self, parameter, dispersion):
150        """
151        Set the dispersion object for a model parameter
152       
153        :param parameter: name of the parameter [string]
154        :param dispersion: dispersion object of type DispersionModel
155       
156        """
157        return CVesicleModel.set_dispersion(self, parameter, dispersion.cdisp)
158       
159   
160# End of file
Note: See TracBrowser for help on using the repository browser.