source: sasview/sansmodels/src/sans/models/VesicleModel.py @ 40d4b09

ESS_GUIESS_GUI_DocsESS_GUI_batch_fittingESS_GUI_bumps_abstractionESS_GUI_iss1116ESS_GUI_iss879ESS_GUI_iss959ESS_GUI_openclESS_GUI_orderingESS_GUI_sync_sascalccostrafo411magnetic_scattrelease-4.1.1release-4.1.2release-4.2.2release_4.0.1ticket-1009ticket-1094-headlessticket-1242-2d-resolutionticket-1243ticket-1249ticket885unittest-saveload
Last change on this file since 40d4b09 was 7ad9887, checked in by Jae Cho <jhjcho@…>, 15 years ago

Added model descrp.s

  • Property mode set to 100644
File size: 4.0 KB
Line 
1#!/usr/bin/env python
2"""
3        This software was developed by the University of Tennessee as part of the
4        Distributed Data Analysis of Neutron Scattering Experiments (DANSE)
5        project funded by the US National Science Foundation.
6
7        If you use DANSE applications to do scientific research that leads to
8        publication, we ask that you acknowledge the use of the software with the
9        following sentence:
10
11        "This work benefited from DANSE software developed under NSF award DMR-0520547."
12
13        copyright 2008, University of Tennessee
14"""
15
16""" Provide functionality for a C extension model
17
18        WARNING: THIS FILE WAS GENERATED BY WRAPPERGENERATOR.PY
19                 DO NOT MODIFY THIS FILE, MODIFY ..\c_extensions\vesicle.h
20                 AND RE-RUN THE GENERATOR SCRIPT
21
22"""
23
24from sans.models.BaseComponent import BaseComponent
25from sans_extension.c_models import CVesicleModel
26import copy   
27   
28class VesicleModel(CVesicleModel, BaseComponent):
29    """ Class that evaluates a VesicleModel model.
30        This file was auto-generated from ..\c_extensions\vesicle.h.
31        Refer to that file and the structure it contains
32        for details of the model.
33        List of default parameters:
34         scale           = 1.0
35         radius          = 100.0 [A]
36         thickness       = 30.0 [A]
37         core_sld        = 6.36e-006 [1/A²]
38         shell_sld       = 5e-007 [1/A²]
39         background      = 0.0 [1/cm]
40
41    """
42       
43    def __init__(self):
44        """ Initialization """
45       
46        # Initialize BaseComponent first, then sphere
47        BaseComponent.__init__(self)
48        CVesicleModel.__init__(self)
49       
50        ## Name of the model
51        self.name = "VesicleModel"
52        ## Model description
53        self.description ="""Model parameters:    radius : the core radius of the vesicle
54                thickness: the shell thickness
55                core_sld: the core SLD
56                shell_sld: the shell SLD
57                background: incoherent background
58                scale : scale factor"""
59       
60                ## Parameter details [units, min, max]
61        self.details = {}
62        self.details['scale'] = ['', None, None]
63        self.details['radius'] = ['[A]', None, None]
64        self.details['thickness'] = ['[A]', None, None]
65        self.details['core_sld'] = ['[1/A²]', None, None]
66        self.details['shell_sld'] = ['[1/A²]', None, None]
67        self.details['background'] = ['[1/cm]', None, None]
68
69                ## fittable parameters
70        self.fixed=['radius.width', 'thickness.width']
71       
72        ## parameters with orientation
73        self.orientation_params =[]
74   
75    def clone(self):
76        """ Return a identical copy of self """
77        return self._clone(VesicleModel())   
78   
79    def run(self, x = 0.0):
80        """ Evaluate the model
81            @param x: input q, or [q,phi]
82            @return: scattering function P(q)
83        """
84       
85        return CVesicleModel.run(self, x)
86   
87    def runXY(self, x = 0.0):
88        """ Evaluate the model in cartesian coordinates
89            @param x: input q, or [qx, qy]
90            @return: scattering function P(q)
91        """
92       
93        return CVesicleModel.runXY(self, x)
94       
95    def evalDistribition(self, x = []):
96        """ Evaluate the model in cartesian coordinates
97            @param x: input q[], or [qx[], qy[]]
98            @return: scattering function P(q[])
99        """
100        return CVesicleModel.evalDistribition(self, x)
101       
102    def calculate_ER(self):
103        """ Calculate the effective radius for P(q)*S(q)
104            @return: the value of the effective radius
105        """       
106        return CVesicleModel.calculate_ER(self)
107       
108    def set_dispersion(self, parameter, dispersion):
109        """
110            Set the dispersion object for a model parameter
111            @param parameter: name of the parameter [string]
112            @dispersion: dispersion object of type DispersionModel
113        """
114        return CVesicleModel.set_dispersion(self, parameter, dispersion.cdisp)
115       
116   
117# End of file
Note: See TracBrowser for help on using the repository browser.