1 | |
---|
2 | from sans.models.BaseComponent import BaseComponent |
---|
3 | from math import exp, sqrt |
---|
4 | from numpy import power |
---|
5 | from scipy.special import erf |
---|
6 | max_level_n = 7 |
---|
7 | class UnifiedPowerRgModel(BaseComponent): |
---|
8 | """ |
---|
9 | This model is based on Exponential/Power-law fit method developed |
---|
10 | by G. Beaucage |
---|
11 | """ |
---|
12 | def __init__(self, multfactor=1): |
---|
13 | BaseComponent.__init__(self) |
---|
14 | """ |
---|
15 | :param multfactor: number of levels in the model, assumes 0<= level# <=5. |
---|
16 | """ |
---|
17 | |
---|
18 | ## Setting model name model description |
---|
19 | self.name = "UnifiedPowerRg" |
---|
20 | self.description="""Multiple Levels of Unified Exponential/Power-law Method. |
---|
21 | Up to Level 6 is provided. |
---|
22 | Note; the additional Level 0 is an inverse linear function, |
---|
23 | i.e., y = scale/x + background. |
---|
24 | The Level N is defined as |
---|
25 | y = background + scale * Sum(1..N)[G_i*exp(-x^2*Rg_i^2/3) |
---|
26 | + B_i/x^(power_i)*(erf(x*Rg_i/sqrt(6))^(3*power_i))]. |
---|
27 | Ref: |
---|
28 | G. Beaucage (1995). J. Appl. Cryst., vol. 28, p717-728. |
---|
29 | G. Beaucage (1996). J. Appl. Cryst., vol. 29, p134-146. |
---|
30 | """ |
---|
31 | self.level_num = multfactor |
---|
32 | ## Define parameters |
---|
33 | self.params = {} |
---|
34 | |
---|
35 | ## Parameter details [units, min, max] |
---|
36 | self.details = {} |
---|
37 | |
---|
38 | # non-fittable parameters |
---|
39 | self.non_fittable = [] |
---|
40 | |
---|
41 | # list of function in order of the function number |
---|
42 | self.fun_list = self._get_func_list() |
---|
43 | ## dispersion |
---|
44 | self._set_dispersion() |
---|
45 | ## Define parameters |
---|
46 | self._set_params() |
---|
47 | |
---|
48 | ## Parameter details [units, min, max] |
---|
49 | self._set_details() |
---|
50 | |
---|
51 | #list of parameter that can be fitted |
---|
52 | self._set_fixed_params() |
---|
53 | |
---|
54 | ## functional multiplicity of the model |
---|
55 | self.multiplicity_info = [max_level_n,"Level No.:",[],[]] |
---|
56 | |
---|
57 | def _unifiedpowerrg(self,x): |
---|
58 | """ |
---|
59 | Scattering function |
---|
60 | |
---|
61 | :param x: q value(s) |
---|
62 | :return answer: output of the function |
---|
63 | """ |
---|
64 | # common parameters for the model functions |
---|
65 | bkg = self.params['background'] |
---|
66 | scale = self.params['scale'] |
---|
67 | l_num = self.level_num |
---|
68 | # set default output |
---|
69 | answer = 0.0 |
---|
70 | # Set constant on lebel zero (special case) |
---|
71 | if l_num == 0: |
---|
72 | answer = scale / x + bkg |
---|
73 | return answer |
---|
74 | # rearrange the parameters for the given label no. |
---|
75 | for ind in range(1,l_num+1): |
---|
76 | # get exp term |
---|
77 | exp_now = exp(-power(x*self.params['Rg%s'% ind],2)/3.0) |
---|
78 | # get erf term |
---|
79 | erf_now = erf(x*self.params['Rg%s'% ind]/sqrt(6.0)) |
---|
80 | # get power term |
---|
81 | pow_now = power((erf_now*erf_now*erf_now/x),self.params['power%s'% ind]) |
---|
82 | # get next exp term only if it exists |
---|
83 | try: |
---|
84 | exp_next = exp(-power(x*self.params['Rg%s'% (ind+1)],2)/3.0) |
---|
85 | except: |
---|
86 | exp_next = 1.0 |
---|
87 | # get to the calculation |
---|
88 | answer += self.params['G%s'% ind]*exp_now + self.params['B%s'% ind]* \ |
---|
89 | exp_next * pow_now |
---|
90 | # take care of the singular point |
---|
91 | if x == 0.0: |
---|
92 | answer = 0.0 |
---|
93 | for ind in range(1,l_num+1): |
---|
94 | answer += self.params['G%s'% ind] |
---|
95 | # get scaled |
---|
96 | answer *= scale |
---|
97 | # add background |
---|
98 | answer += bkg |
---|
99 | return answer |
---|
100 | |
---|
101 | def _set_dispersion(self): |
---|
102 | """ |
---|
103 | model dispersions |
---|
104 | """ |
---|
105 | ##set dispersion from model |
---|
106 | self.dispersion = {} |
---|
107 | |
---|
108 | |
---|
109 | def _set_params(self): |
---|
110 | """ |
---|
111 | Concatenate the parameters of the model to create |
---|
112 | this model parameters |
---|
113 | """ |
---|
114 | # common parameters for the model functions |
---|
115 | self.params['background'] = 0.0 |
---|
116 | self.params['scale'] = 1.0 |
---|
117 | l_num = self.level_num |
---|
118 | # rearrange the parameters for the given label no. |
---|
119 | for ind in range(0,l_num+1): |
---|
120 | if ind == 0: |
---|
121 | continue |
---|
122 | # multiple factor for higher labels |
---|
123 | mult = 1.0 |
---|
124 | mul_pow = 1.0 |
---|
125 | if ind != l_num: |
---|
126 | mult = 10.0 * 4.0/3.0 |
---|
127 | mul_pow = 2.0 |
---|
128 | # Set reasonably define default values that consistent |
---|
129 | # w/NIST for label #1 |
---|
130 | self.params['G%s'% ind] = 0.3*mult*pow(10, \ |
---|
131 | (l_num+1 - float('%s'% ind))) |
---|
132 | self.params['Rg%s'% ind] = 21.0/mult*pow(10, \ |
---|
133 | (l_num - float('%s'% ind))) |
---|
134 | self.params['B%s'% ind] = 6e-03/mult*pow(10, \ |
---|
135 | -(l_num+1 - float('%s'% ind))) |
---|
136 | self.params['power%s'% ind] = 2.0 * mul_pow |
---|
137 | |
---|
138 | |
---|
139 | def _set_details(self): |
---|
140 | """ |
---|
141 | Concatenate details of the original model to create |
---|
142 | this model details |
---|
143 | """ |
---|
144 | # common parameters for the model functions |
---|
145 | self.details['background'] = ['[1/cm]', None, None] |
---|
146 | self.details['scale'] = ['', None, None] |
---|
147 | # rearrange the parameters for the given label no. |
---|
148 | for ind in range(0,self.level_num+1): |
---|
149 | if ind == 0: |
---|
150 | continue |
---|
151 | self.details['G%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
152 | self.details['Rg%s'% ind] = ['[A]', None, None] |
---|
153 | self.details['B%s'% ind] = ['[1/(cm.sr)]', None, None] |
---|
154 | self.details['power%s'% ind] = ['', None, None] |
---|
155 | |
---|
156 | |
---|
157 | def _get_func_list(self): |
---|
158 | """ |
---|
159 | Get the list of functions in each cases |
---|
160 | """ |
---|
161 | func_list = {} |
---|
162 | return func_list |
---|
163 | |
---|
164 | def getProfile(self): |
---|
165 | """ |
---|
166 | Get SLD profile |
---|
167 | |
---|
168 | : return: None, No SLD profile supporting for this model |
---|
169 | """ |
---|
170 | return None |
---|
171 | |
---|
172 | def setParam(self, name, value): |
---|
173 | """ |
---|
174 | Set the value of a model parameter |
---|
175 | |
---|
176 | : param name: name of the parameter |
---|
177 | : param value: value of the parameter |
---|
178 | """ |
---|
179 | # set param to new model |
---|
180 | self._setParamHelper(name, value) |
---|
181 | |
---|
182 | def _setParamHelper(self, name, value): |
---|
183 | """ |
---|
184 | Helper function to setParam |
---|
185 | """ |
---|
186 | |
---|
187 | # Look for standard parameter |
---|
188 | for item in self.params.keys(): |
---|
189 | if item.lower()==name.lower(): |
---|
190 | self.params[item] = value |
---|
191 | return |
---|
192 | |
---|
193 | raise ValueError, "Model does not contain parameter %s" % name |
---|
194 | |
---|
195 | |
---|
196 | def _set_fixed_params(self): |
---|
197 | """ |
---|
198 | Fill the self.fixed list with the model fixed list |
---|
199 | """ |
---|
200 | pass |
---|
201 | |
---|
202 | |
---|
203 | def run(self, x = 0.0): |
---|
204 | """ |
---|
205 | Evaluate the model |
---|
206 | |
---|
207 | : param x: input q-value (float or [float, float] as [r, theta]) |
---|
208 | : return: (DAB value) |
---|
209 | """ |
---|
210 | if x.__class__.__name__ == 'list': |
---|
211 | # Take absolute value of Q, since this model is really meant to |
---|
212 | # be defined in 1D for a given length of Q |
---|
213 | #qx = math.fabs(x[0]*math.cos(x[1])) |
---|
214 | #qy = math.fabs(x[0]*math.sin(x[1])) |
---|
215 | return self._unifiedpowerrg(x) |
---|
216 | elif x.__class__.__name__ == 'tuple': |
---|
217 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
218 | else: |
---|
219 | return self._unifiedpowerrg(x) |
---|
220 | |
---|
221 | |
---|
222 | return self._unifiedpowerrg(x) |
---|
223 | |
---|
224 | def runXY(self, x = 0.0): |
---|
225 | """ |
---|
226 | Evaluate the model |
---|
227 | |
---|
228 | : param x: input q-value (float or [float, float] as [qx, qy]) |
---|
229 | : return: DAB value |
---|
230 | """ |
---|
231 | if x.__class__.__name__ == 'list': |
---|
232 | q = math.sqrt(x[0]**2 + x[1]**2) |
---|
233 | return self._unifiedpowerrg(x) |
---|
234 | elif x.__class__.__name__ == 'tuple': |
---|
235 | raise ValueError, "Tuples are not allowed as input to BaseComponent models" |
---|
236 | else: |
---|
237 | return self._unifiedpowerrg(x) |
---|
238 | |
---|
239 | def calculate_ER(self): |
---|
240 | """ |
---|
241 | """ |
---|
242 | # Not implemented!!! |
---|
243 | pass |
---|
244 | |
---|
245 | def set_dispersion(self, parameter, dispersion): |
---|
246 | """ |
---|
247 | Set the dispersion object for a model parameter |
---|
248 | |
---|
249 | : param parameter: name of the parameter [string] |
---|
250 | :dispersion: dispersion object of type DispersionModel |
---|
251 | """ |
---|
252 | pass |
---|